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Abstract 
Large-scale genomic resources can place genetic variation into an ecologically informed context. To advance our understanding of the population 
genetics of the fruit fly Drosophila melanogaster, we present an expanded release of the community-generated population genomics resource 
Drosophila Evolution over Space and Time (DEST 2.0; https://dest.bio/). This release includes 530 high-quality pooled libraries from flies collected 
across six continents over more than a decade (2009 to 2021), most at multiple time points per year; 211 of these libraries are sequenced and 
shared here for the first time. We used this enhanced resource to elucidate several aspects of the species’ demographic history and identify 
novel signs of adaptation across spatial and temporal dimensions. For example, we showed that the spatial genetic structure of populations is 
stable over time, but that drift due to seasonal contractions of population size causes populations to diverge over time. We identified signals 
of adaptation that vary between continents in genomic regions associated with xenobiotic resistance, consistent with independent adaptation 
to common pesticides. Moreover, by analyzing samples collected during spring and fall across Europe, we provide new evidence for seasonal 
adaptation related to loci associated with pathogen response. Furthermore, we have also released an updated version of the DEST genome 
browser. This is a useful tool for studying spatiotemporal patterns of genetic variation in this classic model system.
Keywords: Drosophila melanogaster, dataset, population structure, seasonal selection, local adaptation, ecological genomics

Introduction
Drosophila melanogaster is a foundational model system in 
biology. Seminal studies in this species have played important 
roles in the development of modern population genetics, from 
empirical tests of genetic drift to classic examples of adaptation 
(Buri 1956; Lewontin 1974; Parsons 1975; McDonald and 
Kreitman 1991; Powell 1997; Casillas and Barbadilla 2017; 
Flatt 2020). Beyond its role as a model genetic system (Hales 
et al. 2015), D. melanogaster has a fascinating natural history 
in its own right. The species originated in southern-central 
Africa (Lachaise et al. 1988; Lachaise and Silvain 2004; 
Sprengelmeyer et al. 2020), splitting from its sister taxon, 
Drosophila simulans, between 1.4 and 3.6 Ma (Obbard et al. 
2012; Suvorov et al. 2022). While the species may have origin
ally been a marula fruit specialist in the seasonal woodlands of 
southern-central Africa (Mansourian et al. 2018; Sprengelmeyer 
et al. 2020), it later adapted as a human commensal, ultimately 
developing a cosmopolitan distribution across all human- 
inhabited continents (Kapun et al. 2021; Chen et al. 2024).

The recent development of genomic resources for D. mela
nogaster has led to key discoveries about its phylogeography. 
For example, demographic inference has revealed that fruit 
flies expanded out of Africa after the last glacial maximum 
∼10,000 ya (Kapopoulou et al. 2020), entering Asia around 
3 to 4 kya (Chen et al. 2024), and Europe around ∼1,800 ya 
(Sprengelmeyer et al. 2020). European populations split into 
spatially defined clusters across Europe ∼1,000 ya (Kapun 
et al. 2020, 2021). In the past two centuries, African and 
European populations experienced a secondary contact event 
in North America and Australia, likely due to mercantile activ
ities and immigration (Capy et al. 1986; David and Capy 
1988; Caracristi and Schlötterer 2003; Kao et al. 2015; 
Bergland et al. 2016). Unlike its sister species D. simulans, 
D. melanogaster is capable of overwintering across a broad 
swath of temperate habitats (Izquierdo 1991; Machado et al. 
2016; but see Serga et al. 2015) and can establish resident pop
ulations across its range (Ives 1945, 1970; Machado et al. 
2016; Kapun et al. 2021; Nunez et al. 2024). In temperate re
gions, D. melanogaster populations peak in size at least twice 
during the growing season (June and September; Atkinson and 
Shorrocks 1977) and drastically decrease upon the onset of 
winter. These yearly boom-and-bust cycles are in part respon
sible for estimates of “local” effective population size that are 
orders of magnitude smaller than the “global” effective popu
lation size (Duchen et al. 2013; Sprengelmeyer et al. 2020; 
Nunez et al. 2024).

Over the past two decades, D. melanogaster has been the 
subject of numerous population genomics studies, which 
have collectively illuminated our general understanding of 
the evolution, the demography, and the genetic basis of 

adaptation (e.g. reviewed in Casillas and Barbadilla 2017; 
Haudry et al. 2020; Guirao-Rico and González 2019). Like 
many other cosmopolitan drosophilids, D. melanogaster pop
ulations commonly occur along spatially distributed environ
mental gradients (e.g. latitudinal and altitudinal), leading to 
the formation of clines, with a large body of work providing 
evidence for spatially varying (clinal) selection (De Jong and 
Bochdanovits 2003; Hoffmann and Weeks 2007; Fabian 
et al. 2012; Adrion et al. 2015; Mateo et al. 2018; Flatt 
2020). Moreover, populations of D. melanogaster are known 
to experience strong fluctuating selection regimes across the 
changing seasons (e.g. Schmidt and Conde 2006; Bergland 
et al. 2014; Behrman et al. 2015; Rajpurohit et al. 2018; 
Erickson et al. 2020; Machado et al. 2021; Rudman et al. 
2022; Nunez et al. 2024; reviewed in Johnson et al. 2023). 
For example, worldwide analyses of genetic variation have 
found that chromosomal inversion polymorphisms are often 
involved in both clinal and seasonal adaptation (Lemeunier 
and Aulard 1992; Kapun et al. 2016a, 2023; Kapun and 
Flatt 2019; Nunez et al. 2024). Likewise, several studies 
have successfully linked clinally or seasonally varying poly
morphisms in D. melanogaster to fitness-relevant phenotypes 
(Lemeunier and Aulard 1992; Hoffmann and Weeks 2007; 
Schmidt et al. 2008; Pitchers et al. 2013; Cogni et al. 2014; 
Paaby et al. 2014; Kapun et al. 2016a, 2016b, 2023; 
Durmaz et al. 2019; Kapun and Flatt 2019; Betancourt et al. 
2021; Yu and Bergland 2022; Glaser-Schmitt et al. 2024; 
Nunez et al. 2024). Populations of D. melanogaster can thus 
be thought of as powerful “natural laboratories” to study 
adaptation across time and space, and to disentangle the con
tributions of selection and demography (Jensen et al. 2005; 
Ometto et al. 2005; Teshima et al. 2006; Thornton and 
Jensen 2007; Pavlidis et al. 2010).

Despite the status of D. melanogaster as a model organism, 
generating genomic datasets that capture the breadth and 
depth of genetic and phenotypic variation across the cosmo
politan range of the species is a complex task for single re
search groups. Furthermore, existing data for this species are 
heterogeneous across studies: several studies use resequenced 
inbred or isofemale lines (Langley et al. 2012; Mackay et al. 
2012; Lack et al. 2015, 2016; Coughlan et al. 2022), while 
others use sequencing of outbred individuals sequenced as a 
pool (i.e. Pool-Seq, Schlötterer et al. 2014; e.g. Bergland 
et al. 2014; Machado et al. 2021; Nunez et al. 2024). For these 
reasons, we have previously developed the Drosophila 
Evolution over Space and Time (DEST; https://dest.bio/) re
source, with the aim of facilitating collaborative population 
genomic studies in D. melanogaster (Kapun et al. 2021). The 
DEST resource is the result of the collaborative efforts of the 
European Drosophila Population Genomics Consortium 
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(DrosEU, https://droseu.net/; Kapun et al. 2020) and the 
Drosophila Real-Time Evolution Consortium, DrosRTEC 
(Machado et al. 2021). DEST represents both a tool for mapping 
genomic data and an open-access data repository of worldwide 
genetic variation in the fruit fly. As a bioinformatics tool, DEST 
is a pipeline for mapping Pool-Seq reads to a hologenome refer
ence of fly (i.e. D. simulans and D. melanogaster) and microbial 
genomes, as well as for removing contamination from other spe
cies, such as D. simulans. The tool is a modular mapping pipeline 
that uses a Docker image (Boettiger 2015) and Snakemake (Köster 
and Rahmann 2012) to ensure independence of operating sys
tems. As a genomic panel, the original release of the dataset 
(DEST 1.0) consisted of 271 Pool-Seq D. melanogaster samples 
(>13,000 flies) collected in >20 countries on four continents at dif
ferent seasons and across multiple years. Using these data, we had 
previously described general patterns of phylogeographic struc
ture across four continents, developed a panel of geographically 
informative markers (GIMs) to assess the provenance of fly sam
ples with 90% accuracy, and inferred some basic demographic 
features of population subdivision in Europe (Kapun et al. 2021).

Here, we introduce the second release of the DEST resource 
(DEST 2.0), with expansions in several methodological and bio
logical aspects. From a methodological perspective, we have 
broadened the utility of our Docker application to allow for 
single–end reads to be mapped, a change that allows for older 
datasets to be integrated into DEST. We have explored levels 
of contamination by other species in DEST pools using a highly 
efficient k-mer-based approach (Gautier 2023). We have also es
timated genome-wide rates of recombination using our Pool-Seq 
data by applying a deep learning approach (ReLERNN; Adrion 
et al. 2020). All data on genetic variation and population genetic 
summary statistics can be visualized and retrieved using our new 
and improved genome browser, which has been built with the 
latest JBrowse version 2 (Diesh et al. 2023).

From a biological standpoint, DEST 2.0 includes a substantial 
expansion of the size and scope of the initial dataset. The current 
release includes 530 high-quality Pool-Seq samples (>32,000 
flies), comprising a combination of the previous DEST release 
with newly sequenced pools, collected between 2016 and 2021 
by DrosEU, as well as publicly available Pool-Seq samples 
from published studies of wild-derived D. melanogaster 
(Hoffmann et al. 2002; Reinhardt et al. 2014; Svetec et al. 
2016; Fournier-Level et al. 2019; Lange et al. 2022; Nunez 
et al. 2024). To showcase the utility of DEST 2.0, we performed 
several analyses to infer demography and selection, powered by 
the rich spatial and temporal density of our dataset. Below, we 
divide these analyses into two general categories: “spatial in
sights” and “temporal insights.” For each category, we highlight 
case studies of demographic inference and genome-wide scans 
for adaptive differentiation. Our analyses provide novel insights 
into patterns of demography and selection of natural D. mela
nogaster populations and generate hypotheses that can be tested 
with the power of the Drosophila genetics toolbox in future 
work. In general, our work illustrates the value of DEST 2.0 as 
an open resource for the Drosophila evolutionary genetics and 
genomics community.

Results
DEST 2.0, an Expanded Drosophila Population 
Genomics Resource
The current DEST release (version 2.0) includes 530 high- 
quality samples as well as an additional 207 pools that fell 

below our quality thresholds and were excluded from the ana
lysis (see supplementary table S1, Supplementary Material on
line). In its totality, the 737 pooled libraries originated from 
multiple sources, including both releases of the DEST dataset 
(i.e. 1.0 and 2.0), the Drosophila Genome Nexus (DGN; Lack 
et al. 2016; including one sample from D. simulans; see 
Fig. 1a), as well as from previous publications (Hoffmann et 
al. 2002; Reinhardt et al. 2014; Svetec et al. 2016; 
Fournier-Level et al. 2019; Lange et al. 2022; Nunez et al. 
2024). The 737 samples within DEST 2.0 vary in sequencing 
characteristics, ranging from a read depth (RD) of 4× to 
300× and from an effective haploid sample size (ne; the sample 
size accounting for pool size and Pool-Seq sampling effects) of 
3.7 to 77.2 (supplementary fig. S1 and text S1, Supplementary 
Material online; see Kolaczkowski et al. 2011; Feder et al. 
2012; Gautier et al. 2013).

To ensure the highest possible quality of each sample, we cal
culated a suite of sequencing statistics, including the PCR dupli
cation rate, fraction of missing data, coverage, and number of 
private SNPs across the totality of the dataset (all 737 pools). 
In addition, we also estimated the pN/pS statistic (i.e. the ratio 
of the number of genome-wide nonsynonymous polymorphisms 
to the number of genome-wide synonymous polymorphisms, as 
in Kapun et al. 2021; supplementary fig. S2, Supplementary 
Material online), and assessed non-D. melanogaster contamin
ation through competitive mapping and k-mer approaches 
(Kapun et al. 2021; Gautier 2023; supplementary fig. S3, 
Supplementary Material online). Next, we used a principal com
ponent analysis (PCA) on all quality control metrics to assess 
whether samples should be included or excluded from down
stream analyses (see Fig. 2a and supplementary fig. S4, 
Supplementary Material online; see the “Estimation of 
Nucleotide Diversity” section in Materials and Methods). 
Finally, 136 samples that consisted of multiple replicates from 
the same locality, each with low coverage, were collapsed into 
a single sample. For a more detailed description of data filtering 
procedures and recommendations for users, see supplementary 
text S2, Supplementary Material online. Based on the results of 
these analyses, we obtained a final high-quality dataset of 530 
samples and 4,789,696 SNPs across autosomes and the X 
chromosome for downstream analyses. The high-quality dataset 
contains representative samples from 45 countries across all con
tinents (22 from Africa, 40 from Asia, 302 from Europe, 141 
from North America, 17 from Australia, and 7 from South 
America; Fig. 1a) and across a time span of 12 years (2009 to 
2021). In total, our 530 high-quality samples represent 164 local
ities; of these, 112 were sampled only in 1 year (68%), 18 were 
sampled across 2 years (11%), and the rest (34; 21%) were 
sampled multiple times across several years (Fig. 1b). Overall, de
scriptions and basic subsetting of SNP statistics for DEST 2.0 are 
shown in Table 1. Unless stated otherwise, all of the following 
analyses are based on the 530 high-quality samples.

Estimates of Nucleotide Diversity and 
Recombination Rates
To describe patterns of genetic variation in the DEST 2.0 data, 
we analyzed nucleotide diversity π (Tajima 1983, 1989) esti
mated with npStat (Ferretti et al. 2013). This analysis was con
ducted on a subset of 504 samples with masked BAM files (see 
the “Masked gSYNC Files” section in Materials and Methods). 
As previously observed (Begun and Aquadro 1993; Andolfatto 
2001; Mackay et al. 2012; Kapun et al. 2021; Coughlan et al. 
2022), we found that sub-Saharan African populations had 
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higher levels of genetic variation than other populations 
(Fig. 2b), consistent with out-of-Africa demography (Li and 
Stephan 2006; Lack et al. 2016; Arguello et al. 2019; 
Kapopoulou et al. 2020; Kapun et al. 2021).

We inferred levels of genome-wide recombination across 74 
samples representative of the populations analyzed (see the 
“Recombination Landscape” section in Materials and 
Methods), using the deep learning method ReLERNN (Adrion 
et al. 2020; see Fig. 2c; supplementary fig. S5, Supplementary 
Material online). Overall, recombination rate is highly heteroge
neous among samples and among chromosomes (two-way 
ANOVA, F73,292 = 19.7, P < 1.0 × 10−25, and F4,292 = 1,599.4, 
P < 1.0 × 10−25, respectively; Tukey’s HSD tests, all pairwise 
comparisons between chromosomes P < 1.0 × 10−7, except for 
3R vs. 2R, where P = 0.074). In most populations, there is a sig
nificant positive correlation between recombination rate and 
genetic diversity, consistent with recurrent genetic hitchhiking 
and background selection (Begun and Aquadro 1993; 
supplementary table S2, Supplementary Material online).

The presence of common cosmopolitan inversions had a no
ticeable impact on the recombination landscape. Average recom
bination rates were significantly lower around the inversion 
breakpoints for six out of the seven inversions analyzed 
(Wilcoxon test, P < 0.01; for inversions In(2L)t, In(2R)NS, 
In(3L)P, In(3R)Payne, In(3R)C and In(3R)K; supplementary 
table S3, Supplementary Material online). Recombination was 
also lower for those regions spanning five of these inversions 
than for the rest of the chromosome (Wilcoxon test, P < 0.01; 
for inversions In(2L)t, In(2R)NS, In(3R)Payne, In(3R)C, and 
In(3R)K; supplementary table S3, Supplementary Material
online).

PCAs showed that populations belonging to the same geo
graphic region share similar recombination landscapes 

(supplementary fig. S6 and table S1, Supplementary Material
online for metadata). The geographic pattern is more evident 
when considering relative values of recombination, i.e. the ra
tio of the average recombination rate of each window to the 
average recombination across the respective chromosome, 
and is therefore informative on the recombination landscape 
rather than the absolute recombination rate (compare panels 
A and B with panels C and D in supplementary fig. S6, 
Supplementary Material online).

Spatial Population Structure is Defined by 
Latitudinal and Longitudinal Clines
To investigate patterns of population structure in the DEST 
2.0 dataset, we performed PCA on all 530 samples that passed 
quality filters. We used biallelic SNPs from the euchromatic re
gions of the four major autosome arms (Fig. 3a; also see 
supplementary fig. S7, Supplementary Material online). 
When all autosomes are considered, PC1 divides samples 
from sub-Saharan Africa from all other continents. At the level 
of individual regions, PC1 is correlated with both latitude and 
longitude in North America (r = −0.7; P < 2 × 10−16 and 
r = −0.60; P < 2.2 × 10−16, respectively) and longitude in 
Europe (r = −0.80; P < 2.2 × 10−16; Fig. 3b and c). These pat
terns of population structure were consistent with previously 
published studies (Kapun et al. 2020, 2021; Machado et al. 
2021). Notably, both PC1 and PC2 primarily divided 
African samples from all other clusters, and PC2 also sepa
rated samples in Europe from samples in North America, 
South America, and Australia.

The patterns seen across chromosome-specific PCA were 
strongly correlated to that of the other chromosomes for both 
PCs 1 and 2 (r2L-other chr. = 0.906 to 0.957, r2R-other chr. = 0.933 

(a)

(b)

Fig. 1. Spatial and temporal scales of DEST. a) World map showing 530 high-quality samples part of DEST 1.0 (Kapun et al. 2020), DEST 2.0 (this study), 
and the DGN (Lack et al. 2016). b) Sampling density across years of sampling contained in the DEST dataset. The colors are consistent with (a).
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to 0.967, r3L-other chr. = 0.912 to 0.967, r3R-other chr. = 0.906 to 
0.967; note that all P-values are <1.0 × 10−15). PC3 is peculiar 
in that the whole-genome results were similar only for the 
2R-3L comparison (r = −0.923; P < 1.0 × 10−15) and the 
2L-3R comparison (r = 0.287; P = 1.77 × 10−11), but not 
for the other comparisons (supplementary table S4, 
Supplementary Material online). Notably, we observe that pat
terns in PC3, specifically within 2L and 3R, were strongly 

influenced by the frequencies of In(2L)t and In(3R)Payne, two 
large adaptive cosmopolitan inversion polymorphisms (Kapun 
et al. 2023; Nunez et al. 2024).

We investigated clines in the frequencies of cosmopolitan in
version polymorphisms in DEST 2.0 using inversion-specific 
SNPs that are in strong linkage disequilibrium with the inversion 
breakpoints (Kapun et al. 2014; supplementary fig. S8, 
Supplementary Material online). Many inversions showed 

(a)

(c)

(b)

Fig. 2. Patterns of filtering, genetic variation, and recombination in DEST 2.0. a) Visualization of filtering information of samples using PCA. Each dot is a 
sample’s QC metric, and the color indicates the filtering decision (legend: Pass: samples that pass the filter and are used in downstream analyses; 
Collapse: biological and/or technical replicates collapsed into a single representative sample; otherwise, samples were excluded due to abnormal pN/pS 

levels of high levels of missing data or contamination). b) Autosomal nucleotide diversity (π) calculated across continents (see the “Estimation of 
Nucleotide Diversity” section in Materials and Methods for details). c) Recombination landscape of chromosome 2L in samples representative of the 74 
D. melanogaster populations analyzed (one gray line per sample). Light blue area highlights the region spanning the ln(2L)t inversion. Average (black line) 
and overall distribution envelope (orange shaded ribbon; delineated by the average values ±1.96 SD) are shown.

Table 1 SNP calling information for DEST 2.0 across major autosomes and chromosome X

SNP type 2L 2R 3L 3R X

Total (all) 1,080,586 901,878 1,069,441 1,212,752 525,039
Bi-allelic 1,048,510 877,852 1,039,460 1,182,310 516,077
Inside inversions 569,713 228,826 631,556 159,598 NA
In recombining regions (c > 0) 997,162 836,457 976,915 1,074,768 482,162
Protein coding 796,420 731,794 793,866 944,372 40,4881
Intergenic 828,039 659,966 824,903 929,539 401,586
Synonymous 95,275 91,052 90,635 101,504 49,055
Nonsynonymous 71,534 75,921 72,843 90,905 25,072
Proportion of missing data 0.0511 0.0507 0.0508 0.0493 0.0533

SNPs inside the inversion are estimated for In(2L)t for 2L, In(2R)NS for 2R, In(3L)P for 3L, and the joint region among In(3R)K, In(3R)P, and In(3R)Mo. 
Estimated recombination rates (i.e. rate of cross-over; c”). Functional annotations are only reported for biallelic sites.
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significant clinal patterns along latitude or longitude that were 
consistent across different continents (see supplementary table 
S5, Supplementary Material online for statistical details). Our re
sults are in line with previous observations, in particular for 
In(3R)Payne (Lemeunier and Aulard 1992; Anderson et al. 
2005; Kapun et al. 2016b, 2020, 2023; Kapun and Flatt 2019), 
which showed significant latitudinal clines in North America, 
Europe, and along the Australian east coast. Latitudinal clines 
were also significant for In(2L)t and In(3R)Mo in North 
America and Australia and for In(2R)NS and In(3L)P in North 
America, Australia, and Europe. Additionally, while overall 
not being very frequent, In(2R)NS exhibited a highly significant 
longitudinal cline across European populations.

Characterizing Population Structure in European 
and North American Populations
We applied k-means clustering analysis on the first three auto
somal PCs to identify spatially defined clusters. First, with k = 4 
clusters, we fully recapitulated the results of DEST 1.0 
(Fig. 4a), with clusters composed of sub-Saharan African sam
ples, the Americas, and two clusters in Europe [as in Kapun 
et al. 2021; “Europe West” (EU-W) and “Europe East” 
(EU-E)]. North African and West Asian samples clustered with 
EU-W. Australian samples were split between the clusters that 
contain Western Europe and the Americas. We also estimated 
population clusters using k = 8, which was estimated to be the op
timal value based on the gap statistic (Tibshirani et al. 2001; 
Fig. 4b-inset). For k = 8, new hypotheses of structure emerged 
(Fig. 4b). In Europe, the previously known EU-W and EU-E clus
ters appeared, separated by a putative third cluster at the bound
ary between EU-E and EU-W (i.e. an “overlapping zone”; 
Fig. 4c). Newer populations (namely the Americas and 
Australia), previously grouped as a single cluster, were divided 
into three clusters: the Caribbean and most of South America, 

a southeast US coastal group, and all other samples from main
land North America (see green, yellow, and pink points, respect
ively, in Fig. 4b). Notably, samples from Australia do not show 
any new levels of clustering when k = 8, relative to k = 4. 
Instead, they retain their original cluster association, whereby 
samples from the south of the continent cluster with samples 
from EU-W, and those from the north cluster with North 
American populations (Fig. 4a and b).

While the gap statistic showed that k = 8 was the optimal num
ber of clusters, the difference between k = 4 and k = 8 was mar
ginal (see Fig. 4b-inset). To test whether the additional clusters 
provide novel biological insights, we assessed the support for 
each set of clusters using model-based demographic inference 
with moments (Jouganous et al. 2017). Specifically, we aimed 
to determine whether these clusters represent distinct population 
introductions into Europe (in the case of the overlap zone, poten
tially indicating an alternative out-of-Africa migration) or into 
the Americas (in the case of the Caribbean cluster), relative to 
the known demographic clusters at these sites. We fit neutral 
models of population history that we call “one-population,” 
“split,” “admixture,” and “two-splits” (see supplementary fig. 
S9, Supplementary Material online; see description in the 
“Demographic Model Selection with Moments” section in 
Materials and Methods) to subsets of the DEST 2.0 variant 
data consisting of the clusters identified in k = 8 
(supplementary table S6, Supplementary Material online). We 
used this framework primarily for model selection among the 
proposed demographic histories, rather than for estimating spe
cific demographic parameters. We expect the analysis to remain 
robust across model selection, and note that the models we com
pared mainly differ in the topology of the graph summarizing 
population histories (see Discussion).

First, we fit the “one-population” and two-population 
“split” models to the Southeastern North America 
clusters (i.e. cluster 6 vs. cluster 4 in Fig. 4b) to conclude 

(a)

(b) (c)

Fig. 3. PCA and projections. a) PCA projections showing PCs 1 and 2. Analyses were done for each chromosome arm and all arms combined. The 
proportion of variance explained (VE) is shown at the corners of each axis. b) Projections of PCs 1 and 2 relative to latitude for Europe and North American 
pools. c) Same as (b) but for longitude. Notice that, in this analysis, Asia refers primarily to samples from Turkey (which is located in Western Asia).
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that “one-population” better describes the region (Wilcoxon 
signed-rank test on model likelihoods, P = 7.02 × 10−7; 
supplementary fig. S10a, Supplementary Material online). 
This result, in which there is no strong evidence of historic di
vergence between the two clusters, along with low FST (0.034), 
supports the parsimony of clustering at k = 4. Similarly, our 
analysis also showed that Caribbean populations (cluster 5 
in Fig. 4b) are not a distinct cluster relative to the rest of the 
Americas (clusters 4 and 6 in Fig. 4b; supplementary fig. 
S10b, Supplementary Material online).

In Europe, we conducted model comparisons among a two- 
population “split” model, three variants of the three- 
population “admixture” model in which EU-W, the overlap 
region, and EU-E (clusters 2, 7, and 8, respectively, in 
Fig. 4b) are treated as the admixed population, and three var
iants of the three-population “two-splits” model in which 
EU-W, the overlap region, and EU-E are, respectively, treated 
as a sister group to the other two populations. We found 
support for the two-population models that do not include 
the overlap zone as a discrete population (Dunn’s tests on 
model likelihoods, six corrected P-values <3.3 × 10−7; 
supplementary fig. S10c, Supplementary Material online). 
This result and the low three-way FST (0.036), indicate that 
only the EU-E and EU-W clusters are distinguished as discrete 
populations and that the overlap zone may simply be an active 
area of gene flow between EU-W and EU-E. Overall, these 
findings suggest that the optimal demographic partitioning 
of the data coincides with clustering at k = 4, as reported in 
the original DEST release (Kapun et al. 2021).

Next, we investigated the signals in the data that may have 
given rise to the clusters proposed by k = 8. We focused our 
analyses on the role of African–European admixture in the 
samples, as this is a primary driver of standing genetic variation 
in recently expanded populations. To achieve this, we esti
mated admixture levels in the Americas and Australian popula
tions using a two-pronged approach: a model-based method 
implemented with moments, and a linear modeling approach 
that has been previously applied in Drosophila, as described 
by Alkorta-Aranburu et al. (2012) and Bergland et al. (2016; 
see supplementary dataset S1a and b, Supplementary 
Material online). Results from both methods are highly corre
lated (r = 0.9, P < 2× 10−16; Fig. 5a); however, the linear meth
od consistently produces higher estimates of African ancestry 
relative to moments [concordance correlation ρ = 0.59, 95% 
confidence interval (CI) = 0.53 to 0.66]. We investigated this 
systematic discordance among the inference methods using 
population genetic simulations with SLiM (Haller and Messer 
2023; see “Population Genetics Simulations with SLiM” sec
tion in Materials and Methods). We simulated a stepping-stone 
model resulting from secondary contact and evaluated the per
formance of the two admixture-estimation methods. Both 
methods capture the overall clinal pattern of admixture; how
ever, neither consistently recovers the true ancestry proportions 
(correlation with simulated ancestry: rLinear = 0.79, rmoments = 
0.80, both P < 2.0 × 10−16; supplementary fig. S11a, 
Supplementary Material online). However, the two methods 
exhibit distinct error profiles. The moments-based approach 
is generally more precise, consistently overestimating ancestry 

(a) (b)

(c) (d)

Fig. 4. Spatial population structure and admixture in worldwide Drosophila. a) Clustering map, based on PCA projections 1 to 3 built using k = 4 (as 
reported in DEST 1.0). b) Same as (a) but with k = 8 (the optimal number of clusters as defined by a heuristic Gap statistic search, as shown in the inset). 
c) Zoom view of k = 8 into Europe to show the hypothetical overlap zone. d) Zoom view of k = 8 into North America showing the hypothetical 
“Latin America” cluster (green) and Southeast cluster (yellow).
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by only 2% to 10% on average. In contrast, the linear modeling 
approach shows greater variability, either overestimating or 
underestimating ancestry depending on simulation parameters, 
with errors ranging from 10% to 20% (supplementary fig. 
S11b, Supplementary Material online). We also evaluated the 
slope of the ancestry cline across the stepping-stone model 
(βancestry) for both methods. Consistent with the ancestry propor
tion results, both methods underestimated the steepness of the 
ancestry cline (supplementary fig. S11c, Supplementary 
Material online); however, the moments-based approach more 
closely approximated the true slope observed in the simulations 
(supplementary fig. S11d and e, Supplementary Material online).

Based on the simulation results, we conducted all subsequent 
analyses using the moments-based estimates. Overall, our esti
mates of African admixture were consistent with previously pub
lished findings (i.e. a significant negative pattern in North 
America, βAfrican anc. = −0.0044, P < 2.2 × 10−16, and a positive 
correlation between African admixture and latitude in 
Australia, βAfrican anc. = 0.0036, P = 0.0019, see Fig. 5b; 
Bergland et al. 2016; Corbett-Detig and Nielsen 2017; 
Coughlan et al. 2022). Analyses on South American samples re
vealed no significant correlation, likely due to limited sample size, 
yet showed considerable variation in admixture levels (9% to 
28%). We also estimated the relationship between levels 
of admixture and longitude in North America. Here, we identi
fied a significant association between longitude and ancestry 
(βAfrican anc. = 0.0007, P = 1.96 × 10−6). This was evidenced 
when levels of African ancestry were projected onto a map of 
North America (Fig. 5c), revealing that West Coast samples 
have lower levels of African ancestry when compared with sam
ples in the eastern seaboard at comparable latitudes. These re
sults suggest that, in North America, the patterns seen under k 

= 8 emerge due to the different levels of African admixture 
(Fig. 4d, also supplementary fig. S11f, Supplementary 
Material online).

Lastly, we conducted a survey of genetic differentiation 
across the demographic clusters (see “Estimation of 
Nucleotide Diversity” in Materials and Methods). The overall 
differentiation was FST = 0.050 ± 0.001 for autosomes and 
nearly twice as high for the X chromosome (0.092 ± 0.004; 
Fig. 6a). These results were robust to the removal of hetero
chromatic regions and low-frequency alleles [minimum allele 
frequency (MAF) < 0.05; supplementary fig. S12, 
Supplementary Material online]. To quantify the level of differ
entiation between population groups defined by their continen
tal cluster (Fig. 4a), we used a hierarchical FST (hFST) model 
(Nei 1973) that decomposes the total differentiation into 
across-group (FGT) and within-group components (i.e. a com
posite label of continent and cluster; FSG) contributions, using 
unbiased estimators developed for Pool-Seq data (Gautier et al. 
2024 ). Note that here we refer to the overall differentiation 
under the hierarchical model as hFST [with (1 − hFST) = (1 − 
FSG)(1 − FGT)] to distinguish it from the standard FST defined 
under a model without population groups. As shown in 
Fig. 6a, FSG was always lower than FGT, demonstrating that 
there is less differentiation within than between most clusters. 
We evaluated the level of differentiation across all cluster- 
continent pairs by computing pairwise FGT. For each pair of 
regions, the underlying populations were analyzed under a 
hierarchical FST model with two groups, as shown in Fig. 6b
(see results for k = 8 in supplementary fig. S13, 
Supplementary Material online). In general, all clusters involv
ing Africa were consistently more differentiated than 
non-African groups. The highest level of differentiation was 

(a)

(c)

(b)

Fig. 5. Patterns of admixture across the Americas and Australia. a) Correlation between admixture estimates obtained using moments as well as with the 
linear modeling method. b) Coefficients of linear admixture for Australia and North America, inferred using moments. c) Map projection of levels of African 
ancestry in North American samples (moments estimate).
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observed between Africa and EU-E (FGT = 0.22; Fig. 6b). 
Despite being located geographically between EU-W and 
EU-E, samples from the overlapping zone in Europe and Asia 
were more similar to EU-W than to EU-E (Fig. 6b). All popula
tions in the Americas and Australia (i.e. “recent expansion” 
populations) were more similar to each other than to Africa 
or Europe. These findings align with previously published 
work (Bergland et al. 2016), indicating that flies in Australia 
and the Americas are subject to admixture from a recent sec
ondary encounter between European and African populations. 
Finally, we estimated the differentiation (i.e. standard FST) 
within each cluster-continent level (Fig. 6c). Europe (cluster 
2k = 4) exhibited the lowest levels of differentiation, and 
South America (cluster 4k = 4) the highest, which was essentially 
driven by a Brazilian and an Ecuadorian sample (Fig. 4c).

Updated Geographically Informative Markers 
Improve Predictive Resolution of Samples
Our previous release of DEST generated a panel of GIMs 
(Kapun et al. 2021). The second release of our data gives us 
the unique opportunity to test the accuracy of our previously 
published markers. To this end, we applied our previous DEST 
1.0 GIMs to our new data, and we assessed the distance (dhav; 
as great circle distance, see the “GIM Predictive Models” sec
tion in Materials and Methods) between the predicted locality 
and the “real” locality as recorded in the metadata. Overall, 
both DEST 1.0 models trained at the level of “city” and “re
gion” (i.e. resolution at the level of state or province) perform 
similarly well on the new data (r = 0.995, P =2.2 × 10−16; 
Fig. 7a). Next, we aggregated the dhav estimates at the level 
of continents. We did this to assess whether the quality of 
our predictions varies as a function of continent. Overall, 
the best performance was observed in European samples (me
dian resolution of ∼409 km to real location; Fig. 7b), followed 
by the North American samples, with a resolution of 794 km. 

Unsurprisingly, the worst predictions from the DEST 1.0 
markers occurred when deployed on samples from South 
America and Australia, two locations that were not included 
in the first release (Fig. 7b).

While our published markers performed well on samples 
from regions present in DEST 1.0, the addition of new regions 
to DEST required the generation of new GIMs. As such, 
we trained a new demographic model (DEST-GIM 2.0) in
cluding the new samples reported in this paper. Our new mod
el was trained using the same workflow as DEST-GIM 1.0 (i.e. 
by retaining 40 PCs). Yet, the models differ in that DEST-GIM 
2.0 was created by exclusively using noncoding SNPs as well 
as loci outside genomic regions spanning major cosmopolitan 
inversions. This new panel of GIMs is composed of 29,952 
SNPs across all autosomes. Performance assessment of the 
new model by the dhav analysis shows that DEST-GIM 2.0 per
forms similarly to the 1.0 version for existing locales (e.g. 
Europe or North America; Fig. 7b), yet they provide improved 
prediction accuracy for new regions (Fig. 7b and c).

Winter Severity Drives Year-to-Year Levels of 
Genetic Variation in Overwintering Populations
While much of demographic research in D. melanogaster has 
focused on spatial patterns of genetic variation, there is strong 
evidence that temporal demography, driven by yearly cycles of 
summer “booms” and winter “busts,” can have strong and 
quantifiable effects on the frequency and levels of standing 
genetic variation in wild populations (Bergland et al. 2014; 
Nunez et al. 2024). For example, levels of postoverwintering 
(i.e. year-to-year) FST are generally higher than FST between 
samples collected within a growing season, even though over
wintering FST captures a smaller number of generations (1 to 2 
generations) than comparisons within a growing season (ca. 
10 generations). This observation has led to the hypothesis 
that strong bottlenecks due to overwintering alter the genetic 

(a) (b)

(c)

Fig. 6. Genetic differentiation analyses. a) Values of the FST estimates over all DEST samples and their 95% CI (corresponding to ±1.96 SE estimated 
using block−jackknife with blocks of 50,000 consecutive SNPs). Note that the hFST, FGT, and FSG statistics were estimated using the hierarchical FST 

model, over all DEST samples grouped according to the k = 4 clustering analysis and their 95% CI. Colors indicate autosomes and X chromosomes. 
b) Pairwise comparisons between cluster-continents (under k = 4) results in a heat map. In this plot, 1-Africa” refers to Sub-Saharan African populations, 
and “3-Africa” refers to North Africa. The clusters “Australia-3” and “Australia-4” represent samples with low and high levels of African admixture, 
respectively. c) FST estimates within clusters from the k = 4 analysis. For (b) and (c), the population names represent the continent of provenance as well 
as the cluster number identified in Fig. 4a.
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composition of fly populations, both due to changes in the 
amount of genetic drift (Nunez et al. 2024) and due to season
ally varying selection (Bergland et al. 2014; Machado et al. 
2021; Behrman and Schmidt 2022; Johnson et al. 2023). A 
prediction of this hypothesis is that the strength and intensity 
of winter, an ecological driver of yearly population busts, 
should be correlated with the levels of overwintering FST 

from 1 year to the next. To test this prediction, we investigated 
patterns of temporal structure in worldwide DEST samples 
and asked whether latitude (a proxy for winter severity) is cor
related with the levels of year-to-year FST.

For a given site, we assessed levels of FST between samples col
lected in two consecutive years (i.e. growing seasons) from the 
same locality. We implemented this analysis across 43 localities 
and estimated the relationship between mean year-to-year FST 

and latitude. We tested the prediction that higher latitude popu
lations with stronger winter conditions exhibit higher levels of 
year-to-year FST. Indeed, we found a significant positive correl
ation between overwintering FST and latitude, yet the correlation 
is not monotonic. Using “broken-stick” regression (Muggeo 
2003), we identified a change in the latitude–FST relationship at 
50.3°N (Fig. 8a and e). Samples below 50.3°N tend to have lower 
values of year-to-year FST when compared with those above 

50.3°N (Fig. 8b), and the magnitude of correlation between 
latitude and FST varies before and after this latitude mark 
(Fig. 8b; rall = 0.182, r > 50 lat = 0.333, r < 50 lat = 0.117; all 
P = 2.2 × 10−16). These correlations are statistically significant 
and outperform 500 random permutations where latitude 
is shuffled.

A second finding of our year-to-year FST analysis was the dis
covery that several samples collected from Yesiloz, Turkey, are 
outliers (red dots in Fig. 8b) among samples below the 50.3 lati
tude mark (see Fig. 8a and b). This pattern was most apparent 
when considering samples between 2020 and 2021 (Fig. 8d) 
relative to comparisons at other years (Fig. 8c). This signal in 
Turkey appears to be associated with a historical heatwave 
and unusually warm winters in 2021 (see Discussion; Fig. 8d).

Footprints of Adaptive Differentiation to Insecticides 
in Europe
The broad sampling inherent to DEST allows us to test hy
potheses about spatial adaptation in wild flies. We first took 
a heuristic approach where we extracted all regions of the gen
ome with high across-cluster differentiation (i.e. FGT > 0.2; see 
“Characterizing Population Structure in European and North 

(a)

(c)

(b)

Fig. 7. Geographically informative markers. a) Bi-plot of dhav from the DEST 1.0 GIMs. City model (y-axis) and Region model (x-axis). b) Mean and 95% CIs 
of dhav for the DEST 1.0 and 2.0 GIM model (to improve readability, the x-axis has been log10 transformed, and CIs < 0 were set to 1; as 0 is logarithmically 
undefined). The mean distance to the true value is shown by dashed vertical lines (red for DEST 1.0, blue for DEST 2.0, models). c) Quality of predictions 
for the GIM DEST 2.0 model. The color indicates the average distance between the real dhav of a sample and its predicted dhav. Yellow are good predictions 
(accuracy = 0 to 10 m), white are “adequate” predictions (10 to 100 m), and red are poor predictions (1,000 to 10,000 m).
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American Populations” section above) and performed a 
gene-ontology enrichment analysis of genes located in these re
gions of high differentiation (Kofler and Schlötterer 2012). 
Overall, we found an enrichment of genes associated with en
vironmental adaptation, such as responses to oxidative stress, 
metal ions, and pesticides (supplementary table S7, 
Supplementary Material online). One of the strongest signals 
of population differentiation was observed for the region sur
rounding the gene Cyp6g1, a cytochrome P450 (Cyp) gene 
(supplementary fig. S14, Supplementary Material online; a re
sult also observed in DEST 1.0), a well-known gene involved 
in resistance to DDT and neonicotinoid insecticides (Le Goff 
and Hilliou 2017). This signal was particularly high when 
comparing North American and European samples. Elevated 
FGT was also observed when comparing South American 
and North American samples, but not when comparing 
South American and European samples (supplementary fig. 
S14, Supplementary Material online). These signatures of dif
ferentiation suggest different adaptations likely driven by dis
tinct environmental pressures and insecticide exposure levels 
in each continent.

To formally detect footprints of adaptive differentiation in 
our dataset, we applied the “Bayesian Population Association 
Analysis” framework, BayPass (Gautier 2015; Olazcuaga 
et al. 2020) to DEST samples from European localities (irre
spective of sampling year or season; 138 samples in total; 
Fig. 9a) and relied on the estimated XtX* statistic to identify 
overly differentiated SNPs. The analysis identified two regions 
in chromosome 2R as candidates of local adaptation 

(12,188,558 to 12,126,181 and 14,826,182 to 14,976,108; 
Fig. 9d). Both these regions harbor several Cyp genes. For ex
ample, the window at ∼12 Mb contains Cyp6g2, and Cyp6t3, 
whereas the window at ∼14 Mb contains Cyp6a22, Cyp6a19, 
Cyp6a9, Cyp6a20, Cyp6a21, Cyp6a8, and Cyp317a1. These 
genes are associated with hormonal metabolism as well as re
sponses to insecticides (Danielson et al. 1995; Le Goff and 
Hilliou 2017). We performed gene-ontology enrichment ana
lysis of genes within all XtX* outlier regions and found an en
richment of terms such as “oxidation-reduction process,” 
“cellular response to radiation,” and “amide biosynthetic pro
cess,” reflecting results from FGT outlier regions above 
(supplementary table S8, Supplementary Material online).

Antimicrobial Peptides are Enriched Among 
Continent-Wide Targets of Seasonal Adaptation
We explored signals of seasonal evolution in DEST using 
paired spring-fall collections from Europe. In order to ensure 
that this test was not influenced by signals from previously an
alyzed data, we only used samples that were not included in 
previously published analyses (i.e. Bergland et al. 2014; 
Machado et al. 2021; Nunez et al. 2024; Fig. 9a). First, we 
ran the BayPass model, including both the Ω matrix as a 
demographic prior as well as categorical “spring” or “fall” la
bels (defined by the first and last sample collected in a locality 
within a year) in a contrast analysis. Under these conditions, 
BayPass outputs the C2 statistic (Olazcuaga et al. 2020) that 
quantifies the degree of association of allele frequency with 

(b) (c) (d)

(e)

(a)

Fig. 8. Temporal genetic differentiation due to overwintering. a) FST values across DEST 2.0 samples as a function of latitude. Broken-stick regression and 
breakpoint are shown, for samples below latitude 50.3, the regression is shown with and without Turkey. The color indicates the average temperature in 
Celsius between the samples for which the FST was calculated. b) Distribution of year-to-year FST values across DEST 2.0 samples as a function of latitude, 
for comparisons spanning one winter only. Outliers (i.e. data above the 75th percentile) are shown in red. c) Distribution of temporal FST values as a 
function of the mean temperature in Turkey (Yesiloz) samples collected between 2015 and 2020 (logit transformed; correlation between FST and mean 
temperature; r = 0.135; P = 4.60 × 10−7). d) Same as (c) but for comparisons of 2020 and 2021, a historical heatwave year in Turkey and in Southern Europe 
(correlation between FST and mean temperature; r = −0.100; P = 7.74 × 10−13). e) Mean year-to-year FST overlaid over a world map of northern seasonal 
habitats.
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(a)

(d)

(e)

(b) (c)

(f)

Fig. 9. Local and seasonal adaptation in Drosophila. a) Schematic of sampling for the local and seasonal analysis. In total, we used 138 samples collected in 26 
European localities across an 8-year period. We selected localities where there was more than one sample per year and designated the first sample as “spring” 
and the last sample as “fall.” There is no overlap between the samples used here and the samples used in seasonal analysis in Machado et al. (2021), Bergland 
et al. (2014), and Nunez et al. (2024). b) Results of the GLMM analysis. The permutations are shown in gray (95% CIs) and the real data in red. There are more 
SNPs with low seasonal P-values than expected by permutations. c) We performed the contrast analysis using BayPass 2.4. The contrast score (C2 statistic) is 
the test statistic for the seasonal term and follows a χ2 distribution with 1 degree of freedom. The x-axis is the −log10(P-value) from the GLMM. The red horizontal 
line represents the 99.9% significance threshold from the pseudo-observed data (POD) for ∼10 M simulated sites. The red vertical line represents the 99.9% 
significance threshold from the permutations of the GLM analysis. d) Bayesian local adaptation scan. The plot shows the log10 transformed wZa P-value of the 
local adaptation (XtX*) BayPass analysis. For d, e, and f, regions of interest are highlighted in yellow. Inversions are demarcated along the top of the figure. 
e) Bayesian seasonal adaptation scan. The plot shows the log10 transformed wZa P-value of the contrast (C2) adaptation BayPass analysis. f) GLMM seasonal 
adaptation scan. The plot shows the log10 transformed wZa P-value of the LRT of base and seasonal models.
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season. We identified significant C2 values using a simulation 
approach that is part of the BayPass workflow (see the “Scans 
for Adaptive Differentiation” section in Materials and 
Methods; supplementary dataset S2, Supplementary 
Material online). We observe that several regions across the 
Drosophila genome are enriched for signals of parallel season
al evolution (Fig. 9e and f). A notable example appears in 
chromosome 3L (3,222,669 to 3,422,464), inside the region 
spanned by the inversion In(3L)P, where we observe the anti
microbial peptide Drosomycin (Drs) as well as several 
Drs-associated genes (i.e. Drsl2, Drsl3, Drsl4, Drsl5, and 
Drsl6). In view of previous observations of seasonal allele fre
quency oscillations in several immune genes, this result might 
imply functional shifts in immune tolerance and resistance 
across seasons in natural populations (Behrman et al. 2018). 
We performed gene-ontology enrichment analysis of all genes 
within C2 outlier regions (supplementary table S9, 
Supplementary Material online). We found an enrichment 
of, among other terms, genes associated with “alcohol de
hydrogenase (NAD) activity,” including the gene Adh itself 
(supplementary table S10, Supplementary Material online).

We conducted an enrichment analysis comparing our C2 

SNPs (in the top 0.0001%) with loci reported in previous sea
sonal studies, done mostly in North American populations 
(i.e. FDR < 0.3 in Bergland et al. 2014; top 1% SNPs in 
Machado et al. 2021), to assess whether seasonal SNPs in 
Europe are also likely to be seasonal in North America. Our re
sults indicate no significant enrichment of North American sea
sonal SNPs among our European C2 SNPs (supplementary fig. 
S15, Supplementary Material online). Indeed, when compared 
with Pennsylvania data from Bergland et al. (2014), we observed 
a significant deficiency of these targets at both a global level 
(P = 0.024; supplementary fig. S15a, Supplementary Material
online) and specifically on chromosome 3L (P = 0.0055).

Beyond the C2 analysis, we implemented a generalized lin
ear mixed model (GLMM) using the spring-fall seasonal la
bels, showing a global enrichment of seasonal SNPs relative 
to permutations (Fig. 9b). Comparing GLMM and BayPass 
results, we found a large number of SNPs exceeding the simu
lated 99.9% significance threshold for the C2 statistic (Fig. 9c, 
vertical line), with the C2 and GLMM models producing a 
similar set of candidate SNPs (Fig. 9c, red horizontal line). 
Likewise, a sliding window wZa analysis (Booker et al. 
2024) of the GLMM results (window size of 100 kb, step 
size of 50 kb) identified the Drs region as a hotspot of seasonal 
adaptation (as in the C2 analysis), and also revealed a second 
region of interest on chromosome 2R (18,376,129 to 
18,475,992). This region contains several Bomanin genes 
(abbr. Bom; e.g. BomBc1, BomT1, BomS1, BomBc2, 
BomS6) known to play key roles in Drosophila antifungal re
sponses (Xu et al. 2023). A region on 3L, near 20,172,964 to 
20,271,926 bp, notable for harboring adjacent signal peaks 
across analyses of seasonal and local adaptation (see Fig. 9d 
to f; yellow band), contains obstructor-F (obst-F), a gene pre
viously reported as a candidate of insecticide adaptation 
(Campo et al. 2013; Bogaerts-Márquez et al. 2021).

Discussion
A Unified Resource for Wild Drosophila Genomics
Drosophila melanogaster is a cosmopolitan species with resident 
populations across all human-inhabited continents that evolve 
adaptively in response to spatially and temporally varying 

selection in the wild (clinal patterns reviewed in Adrion et al. 
2015; seasonal patterns reviewed in Johnson et al. 2023). To 
achieve a comprehensive understanding of the evolutionary pat
terns within this species, we need to create panels of variation 
sampled across wide geographical scales and densely across 
time. This is not a trivial undertaking for any single lab to achieve. 
The original impetus behind DEST was to generate a unified da
taset and workflow that would capitalize on the collaborative ef
forts of labs and consortia around the world (Kapun et al. 2021). 
DEST 2.0 builds on the original release by adding twice as many 
new samples, significantly expanding the dataset.

Overall, the incorporation of the aforementioned data into the 
dataset showcases the flexibility and capacity for growth of 
DEST, as a centralized and well-annotated repository of 
Drosophila genomics. Furthermore, the DEST 2.0 Dockerized 
pipeline now allows for pools generated using single-end (SE) se
quencing approaches to be incorporated into its workflow, hence 
allowing for older pooled datasets to be included in DEST ana
lyses. We plan to continue maintaining and updating the DEST 
workflow, with potential future expansions to explore other 
Drosophila species and additional data types. To keep pace 
with the influx of new genomic data, we have upgraded the 
DEST genome browser to the latest version of JBrowse, which 
has better scalability and performance when displaying large da
tasets (Diesh et al. 2023).

Heterogeneous Patterns of Recombination in DEST 
Samples
This release also includes genome-wide recombination rate esti
mations for 74 representative populations. In comparison with 
the findings of previous studies (Comeron et al. 2012; Adrion 
et al. 2020), our own estimates show a reduction of ∼3-fold. 
This discrepancy may be attributed to the combination of our 
methodological approach and the nature of our data. The 
deep learning approach of ReLERNN (Adrion et al. 2020) is de
pendent on allele frequencies, and it is thus possible that levels of 
genetic polymorphism may affect the estimation of levels of re
combination rate. In our analyses, we estimated allele frequen
cies on SNPs that were called with very conservative and 
stringent filtering methods. Furthermore, the polymorphism 
data were obtained from Pool-seq data from derived 
European and North American populations, which exhibit low
er levels of genetic polymorphism (∼2- to 3-fold; e.g. Ometto 
et al. 2005) than the ancestral African populations used in 
Adrion et al. (2020). Accordingly, there is a strong and signifi
cant correlation between the number of SNPs and the average 
recombination across the 74 populations (Spearman’s 
ρ = 0.821, S = 12,074, P < 1.0 × 10−25; R2 = 0.667). Notice 
that for this analysis, we estimated the population-scaled effect
ive recombination rate (ρ), rather than the actual crossing-over 
rate (r, where, e.g. in autosomes, ρ = 4Ner). A comparable find
ing was observed in the case of wild barley (Dreissig et al. 2019). 
It seems also probable, however, that our populations can in
deed be characterized by heterogeneous levels of recombination, 
as has been reported by numerous studies in Drosophila (Hunter 
et al. 2016; Samuk et al. 2020; Wang et al. 2023).

New Insights into Ancestral and Recent Fly 
Phylogeography
The prior releases of DEST and similar datasets (Kapun et al. 
2020, 2021; Machado et al. 2021) characterized patterns of 
population structure within North America and Europe. 
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In this paper, we expand the repertoire of samples available for 
demographic inference and phylogeographic analysis and pro
vide novel insight into colonization patterns in Australia and 
South America, as well as the genetic structure of Europe.

Our analyses provide new insights into the colonization his
tory of the Americas and Australia. First, our analyses recapitu
late published signals of a cline in African ancestry in North 
America (Kao et al. 2015; Bergland et al. 2016; Corbett-Detig 
and Nielsen 2017; Coughlan et al. 2022), with higher African 
ancestry in tropical versus temperate populations. These results 
support the hypothesis that African admixture is higher in equa
torial populations, likely due to two separate introductions of 
D. melanogaster to the Americas: one from Europe and one 
from Africa. African ancestors likely entered through the 
Caribbean, with the earliest records of the species appearing in 
Cuba in 1862 (Sturtevant 1921). Introduction of the species, 
however, is documented in historical records starting in 1875 
in New York. This suggests that African–European admixture 
in the eastern United States may have developed around 1876 
(Lintner 1882, p. 217; Keller 2007).

Although the South American samples do not display a sig
nificant ancestry cline, the observed variation (9% to 28%) in
dicates the possibility that clinal patterns could emerge with 
broader sampling. Our results from Australia, on the other 
hand, revealed a reversed latitudinal trend compared with 
North America (Fig. 5b). This is consistent with previous 
work that has demonstrated clines in African/European ancestry 
across Australia (Bergland et al. 2016). Taken together, our re
sults suggest that additional sampling is warranted in Australia 
and South America to further resolve these recent migrations.

Second, previous analysis of population structure in Europe 
(Kapun et al. 2020 , 2021) identified two phylogeographic 
clusters, referred to as Europe East” and “Europe West”. 
Here, we identify a potential third cluster occupying the over
lap zone between these clusters (in the k = 8 analysis; Fig. 4b). 
This cluster is notable since its placement closely mirrors the 
“suture zones” (Remington 1968) of other species, such as 
Bombina toads (Hofman et al. 2007), Leuciscus cephalus 
(Hewitt 2011), and Mus musculus (Ďureje et al. 2012). In 
our analyses, we tested whether this overlap zone is a zone 
of admixture between EU-E and EU-W or if it is a separate 
cluster, perhaps reflecting expansion of a Middle Eastern sub
population. We show that the overlapping zone is not a dis
tinct cluster (supplementary fig. S10c, Supplementary 
Material online) supporting k = 4. It is possible that the over
lap zone is an artifact of the data that appears due to asymmet
rical levels of migration between clusters, as reported 
previously (EU-W → EU-E as 0.209 flies/gen vs. EU-E → 
EU-W as 0.178 flies/gen; Kapun et al. 2021). These findings 
are further supported by our supplementary FST analyses 
that include the overlap zone [e.g. FST (EU-W vs. overlap) = 
0.00; FST (EU-E vs. overlap) = 0.01]. Third, it is also possible 
that these patterns may arise from the action of a non-neutral 
force confounded with the complex demographic history of 
D. melanogaster in Europe. These hypotheses will be explored 
in deeper detail in future work.

To better explore these patterns of phylogeography, we imple
mented a variety of methods, including F-statistic comparisons, 
linear modeling of ancestry proportions, and model-based infer
ence using the program moments (Jouganous et al. 2017). Each 
of these methods has its own strengths and weaknesses, especially 
in the context of Pool-Seq data. Our analysis with moments 
builds on our previous efforts to test demographic inference 

methods on Pool-Seq data (Kapun et al. 2021). However, these 
analyses should be interpreted with caution. Unlike most other 
methods in this paper, which directly or indirectly account for 
the inherent error structure of Pool-Seq datasets, our demograph
ic inference approach using moments does not fully accommo
date the unique biases of Pool-Seq. We highlight three aspects 
that influence our interpretation of the results:

First, as in DEST 1.0, we used the PoolSNP program to call SNPs 
in our dataset. Like many widely used Pool-Seq variant calling 
tools (Koboldt et al. 2009; Kofler et al. 2011), PoolSNP identifies 
polymorphisms by integrating evidence from multiple samples. 
This approach produces a high-quality SNP panel enriched for 
common mutations but comes at the cost of excluding rare and pri
vate mutations within pools (Kapun et al. 2021). While common 
SNPs are sufficient for most analyses presented here, the loss of 
rare variants can impact demographic inference—a challenge 
not unique to Pool-Seq (Gravel et al. 2011). Indeed, comparative 
studies have shown that rare variants are critical for detecting 
fine-scale population structure and recent demographic events, 
whereas common variants are more informative for older demo
graphic events (O’Connor et al. 2015). Here, we aimed to test 
models that reflect relatively ancient events, such as out-of-Africa 
migrations, where common variants (i.e. of older origin) are 
more informative than rare variants (i.e. of very recent origin 
and likely geographically restricted). In other words, following a 
graph interpretation of population histories, we focused on the 
deeper part of the topology, for which common variants have al
ready proven to be highly informative (Patterson et al. 2012).

Second, the current implementation of moments does not 
account for any source of noise in site frequency spectra. In 
the context of Pool-Seq, errors may arise from factors such 
as unequal DNA contributions from individuals, variation in 
sequencing error rates, and differences in effective coverage 
(Carvalho et al. 2023).

Third, we used forward-time population genetic simula
tions in SLiM to assess the performance of our admixture in
ference methods on discretized allele count data derived from 
estimated allele frequencies. While none of the methods per
fectly recovered the true ancestry proportions, all were able 
to detect the general pattern of the admixture cline resulting 
from secondary contact. Notably, the method implemented 
in moments demonstrated higher precision and lower error 
rates compared with the linear modeling approach 
(supplementary fig. S11, Supplementary Material online). 
Furthermore, our admixture estimates aligned closely with 
findings from previously published studies (Bergland et al. 
2016; Corbett-Detig and Nielsen 2017; Coughlan et al. 2022).

These results underscore the potential for integrating Pool-Seq 
data with model-based demographic inference methods to inves
tigate complex population histories. Yet, a systematic evaluation 
of key parameters and known sources of variation—such as dif
ferences in effective coverage—is essential for improving the ac
curacy and reliability of future demographic inferences. We 
acknowledge these limitations and encourage cautious interpret
ation of our model-based results. Nonetheless, the moments- 
based analyses yielded valuable insights into population structure 
and admixture dynamics of the DEST 2.0 samples.

Inferring Targets of Adaptation Across Time and 
Space
The complex patterns of spatial population structure that we 
have described above are likely to alter the adaptive capacity 
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of fly populations. Indeed, a recent genomic analysis of the sib
ling species D. simulans across continents revealed that demo
graphic ancestry, and not shared selection regime, is a better 
predictor for the genetic basis of local adaptation to thermal 
stressors (Otte et al. 2021). These results highlight that assess
ing footprints of adaptation requires robust controls for the 
complex demographic structure of species. We implemented 
the BayPass framework (Gautier 2015; Olazcuaga et al. 
2020) to discover targets of spatially and temporally fluctuat
ing selection across Europe. This framework is flexible, as it 
incorporates priors from population structure (via the Ω ma
trix) and, optionally, environmental variables (either as fac
tors or covariates).

Our analyses of spatial adaptation reveal signatures of 
continent-wide differentiation around cytochrome P450 genes 
(e.g. Cyp genes) in 2R (Fig. 9). Follow-up analyses using esti
mates of across-group differentiation (FGT) revealed that these 
genes are highly differentiated in comparisons between North 
American populations versus both European and South 
American populations (supplementary fig. S14, Supplementary 
Material online). Given that Cyp genes are important players 
in insect detoxification pathways and have been implicated in 
the evolution of insecticide resistance (Le Goff and Hilliou 
2017), these findings suggest that flies have experienced 
continent-wide adaptation to different histories of land and 
pesticide use (see also Kapun et al. 2020). While further experi
mental validation is needed to disentangle the particular gene 
targets and drivers of selection, these data highlight the power 
of DEST to reveal the genetic bases of local adaptation to paral
leled stressors.

We also explored patterns of temporal divergence in re
sponse to seasonality. Previous work has shown that seasonal 
adaptation, via adaptive tracking (Botero et al. 2015), is a ubi
quitous and important evolutionary force affecting patterns of 
genetic variation across the genome of Drosophila (Bergland 
et al. 2014; Kapun et al. 2016a; Machado et al. 2021; 
Rudman et al. 2022; Bitter et al. 2024; Nunez et al. 2024). 
Here, we used the DEST 2.0 data to revisit footprints of sea
sonal adaptation across samples not used in previous analyses. 
Using this dataset, we tested the hypothesis that seasonal 
adaptive tracking is a general phenomenon of European tem
perate Drosophila. One challenge associated with testing this 
hypothesis is determining the appropriate covariate (e.g. tem
perature, humidity, and rainfall) and the timeframe of selec
tion (e.g. 0 to 15, 0 to 30 d prior to collection) to use in the 
model. For example, Nunez et al. (2024) showed that, for 
the inversion In(2L)t in Virginia, the best seasonal model 
used the temperature 0 to 15 d prior to collection as a covari
ate. Yet, in Europe, Nunez et al (2024) showed that humidity 0 
to 30 and 0 to 60 d prior to collection were the best models for 
EU-E and EU-W, respectively. Therefore, we used a contrast 
framework using the seasonal labels (i.e. “spring” and 
“fall”) as comparison factors. This approach had been suc
cessfully used in the past by Bergland et al. (2014) and 
Machado et al. (2021) and allowed us to surmount the chal
lenge of covariate selection.

We implemented a test of seasonality in a two-pronged ap
proach using both the BayPass and the GLMM framework. 
Our results show multiple regions of interest across the gen
ome, which are concordant across both BayPass and 
GLMM. For example, it highlights a region on 3L that enco
des for Drosomycin and Drosomycin-like genes (Fig. 9e), ca
nonical antifungal defense loci (Zhang and Zhu 2009), as a 

continent-wide hotspot of seasonal adaptation (Figs. 9c and f). 
These findings are noteworthy, as fungal communities are 
known to vary drastically across seasons, driven by changes in 
soil moisture, temperature, and carbon availability (Schadt 
et al. 2003). Furthermore, the analysis also reveals a region of 
interest on chromosome 2R containing Bomanin genes that 
are also associated with antifungal defense (Xu et al. 2023). 
Another gene of interest is Obstructor-F, a gene that has several 
functions and that has been associated with pesticide response 
(Campo et al. 2013).

Our gene-ontology enrichment analysis for targets of season
ality highlighted “alcohol dehydrogenase activity”—including 
the gene Adh itself—as being enriched among outlier regions. 
This is significant because patterns of genetic variation in 
Adh have long been recognized as classical examples of eco
logical adaptation (Kreitman 1983; Berry and Kreitman 
1993). However, recent discussions have emphasized that the 
specific agents of selection acting on this gene remain unclear 
(Siddiq and Thornton 2019). We also assessed whether the sea
sonal SNPs observed in our C2 analysis from Europe are en
riched in seasonal datasets generated mostly from North 
American populations (Bergland et al. 2014; Machado et al. 
2021). Our results showed no enrichment (see supplementary 
fig. S15, Supplementary Material online) between the datasets 
compared. In other words, these results suggest that the genetic 
basis of seasonality is different between continents. As men
tioned above, this finding is consistent with previous studies 
positing that population ancestry is a more important predictor 
of adaptive genetic architecture than the existence of paralleled 
selection regimes (Otte et al. 2021).

Overall, our seasonal analyses reveal two major takeaways. 
First, they reveal that seasonal adaptive tracking is a detectable 
phenomenon across the temperate range of D. melanogaster. 
Yet, they also indicate that genetic ancestry may strongly influ
ence the specific loci driving adaptation. And second, the data 
highlight a large role of pathogen response genes as major 
players in worldwide seasonality (Behrman et al. 2018). 
These findings suggest that follow-up studies of seasonality 
should take a more comprehensive approach to incorporate 
both abiotic (e.g. temperature) and biotic (e.g. pathogen) 
views of “seasonality.” Further expansions of the DEST data
set will facilitate more granular exploration of adaptive track
ing driven by spatially and temporally fluctuating selection.

The Impacts of Overwintering Demography on 
Genetic Variation
The results highlighted above showcase the power of DEST to 
examine fine-grained patterns of evolutionary change occur
ring within each population. Yet, seasonal adaptive tracking 
is not the only process at play in temperate habitats. As the sea
sons change, Drosophila populations expand and contract de
pending on resource availability (Atkinson and Shorrocks 
1977). Indeed, the establishment and range limits of many in
sect species are tied to their ability to survive winter (Lawton 
et al. 2022). Previous work has suggested that local fly popu
lations grow to their largest possible size during the summer 
months (with peaks in June and September; see Atkinson 
and Shorrocks 1977; Sanchez-Refusta et al. 1990; Gleason 
et al. 2019; Bangerter 2021) and drastically decrease in size 
following the onset of winter, when resources are scarce and 
reproduction is suppressed, leading flies to enter dormancy 
and overwinter until the next growing season. These seasonal 
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demographic cycles, called “boom-and-bust” demography, 
can result in yearly bottlenecks of up to ∼97% in the “local” 
population (Nunez et al. 2024), and thus are likely to have 
fundamental consequences for standing genetic variation.

Consistent with studies on the impact of large overwintering 
bottlenecks, previous research on temperate Drosophila pop
ulations has revealed significant differences in genetic differen
tiation when comparing patterns of variation within a year 
and across years, a process likely driven by the effects of these 
cyclical winter contractions (Nunez et al. 2024). However, a 
key remaining question is whether these boom-and-bust dy
namics correlate with winter severity: do harsher winters 
lead to greater year-to-year genetic differentiation than milder 
ones? We explored this question using year-to-year FST and 
tested the hypothesis that populations with harsher winters 
have, on average, larger levels of year-to-year FST. Our results 
support this hypothesis, revealing positive correlations be
tween FST and latitude, particularly for samples collected at 
latitudes higher than 50.3°N (Fig. 8a and e). These patterns 
suggest that habitats with colder, harsher winters, typical of 
higher latitude habitats, impose stronger bottlenecks on over
wintering flies relative to lower latitude habitats. Nevertheless, 
given that DEST presently includes only a limited number of 
populations with >5 years of sampling, a systematic compari
son of these dynamics requires an expansion of sampling ef
forts. One notable exception to the pattern of both 
year-to-year and multiyear FST was found in the Turkish sam
ples. There, populations in 2021 showed an unexpected posi
tive correlation between FST and temperature (Fig. 8d; relative 
to patterns in previous years at the same site, Fig. 8c). These 
patterns may have arisen as a result of the harsh weather con
ditions of southern Europe in 2021. During that period, wea
ther anomalies created unusually warm winters as well as the 
hottest and longest summer heat waves in the region’s recent 
history (Lhotka and Kyselý 2022). These results, combined 
with the observed differences in FST levels both within and 
across multiple years at this site, suggest that extreme heat 
waves may also influence the standing genetic variation of flies 
in both tropical and temperate habitats. In this context, heat 
waves may have affected flies both directly, through physio
logical thermal challenges, and also indirectly by affecting 
their food sources.

Overall, our findings provide three major insights into the 
temporal structure of D. melanogaster populations. First, we 
showed that overwintering bottlenecks are associated with 
the severity of winter across habitats. Second, that there is a 
predictable relationship between the strength of winter and 
the genomic consequences of overwintering in fruit flies. 
And third, that temperate fly populations exhibit spatially sta
ble genetic structure and thus accumulate divergence due to 
cyclical episodes of overwintering drift.

Future Directions
In conclusion, our findings not only highlight the power of 
DEST as a resource for fly biologists but also its promise 
and potential for growth. Indeed, as more temporal samples 
continue to be added, more detailed gene-environment associ
ation studies will undoubtedly shine a light on the drivers of 
selection across worldwide habitats. Our data may also be 
used in order to parameterize temporally and spatially explicit 
population genetic simulations, which, combined with climate 
change forecasting datasets, will help to model rapid evolu
tionary responses under various climate scenarios. Lastly, as 

our consortium continues to grow, we are working to include 
a variety of other Drosophila species into DEST. Such multi- 
species data will be pivotal to assess the evolutionary dynamics 
of adaptive tracking across the phylogeny.

Materials and Methods
Sample Mapping and SNP Discovery Using the 
DEST Mapping Pipeline
Samples were mapped to the D. melanogaster hologenome using 
the pipeline described in our first release (Kapun et al. 2021). 
This pipeline consists of a combination of genomic tools (fast-qc 
[v0.12.1], Cutadapt [v2.3] (Martin 2011), BBMap [v38.80] 
(Bushnell et al. 2017), BWA-mem [v0.7.15] (Li 2013), Picard 
[v3.1.1], SAMtools [v1.9] (Li et al. 2009)) in a Docker container. 
For our current release of DEST [v2.0], we have updated the 
Docker container to enable mapping of reads sequenced in 
both paired-end (PE) and SE configurations. This new version 
of the pipeline can be found in Dockerhub (https://hub.docker. 
com/) as destbio/dest_freeze2:latest. SNP calling was performed 
using the PoolSNP algorithm (Kapun et al. 2020). For SNP call
ing, we used the default parameters optimized in the first release 
of DEST (Kapun et al. 2021). Briefly, these parameters are: min
imum allele count = 50, MAF = 0.001, minimum coverage (per 
pool) = 4, max-Coverage = 0.95, and missing Fraction (thresh
old) = 50%. The SNP calling step, as well as genome annotation 
with SNPEff (v5.2; Cingolani et al. 2012), was automated using 
SnakeMake (Mölder et al. 2021). We provide ready-to-use out
puts of the DEST pipeline both in variant call format (VCF) as 
well as in genomic data structure format (Zheng et al. 2012). 
The entire DEST pipeline can be found on GitHub at https:// 
github.com/DEST-bio/DESTv2.

Metadata for All DEST 2.0 Samples
Comprehensive metadata for all DEST 2.0 samples is included 
in supplementary table S1, Supplementary Material online, in
cluding collection information on sampling date and location. 
Flies from the previous release (DEST 1.0) were collected in a 
variety of methods, including aspirators, traps, and nets. New 
samples reported here as part of the DrosEU3 collection were 
sampled using standardized traps with a variety of baits (see 
supplementary table S1, Supplementary Material online). All 
newly acquired samples were collected in a coordinated manner 
and processed following the protocols outlined in Kapun et al. 
(2020). In brief, male flies were exclusively gathered from nat
ural or seminatural habitats, such as orchards, vineyards, and 
compost piles. In Europe, collections primarily used baited traps 
with mashed banana or apples and live yeast, left at sampling 
sites for several days, or were obtained via sweep netting 
(Kapun et al. 2020). In North America, flies were collected using 
sweep nets, aspiration, or baited traps over natural substrates 
(Behrman et al. 2018; Machado et al. 2021; Nunez et al. 
2024). All samples were preserved in 95% ethanol at −20 °C be
fore DNA extraction. In addition, for the current release of 
DEST, we incorporated data from previously published studies 
(Hoffmann et al. 2002; Reinhardt et al. 2014; Svetec et al. 2016; 
Fournier-Level et al. 2019; Lange et al. 2022; Nunez et al. 2024). 
These data were added to DEST by processing the raw sequen
ces using the Docker pipeline. These new samples include: 37 
samples from Nunez et al. (2024), 16 samples from 
Fournier-Level et al. (2019), 2 samples from Hoffmann et al. 
(2002), 17 samples from Lange et al. (2022), 8 samples from 
Reinhardt et al. (2014), and 1 sample from Svetec et al. 
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(2016). Samples from Fournier-Level et al. (2019) consist of 
multiple replicates from the same locality, each with low cover
age. Accordingly, we collapsed all replicates from each site into a 
single “consolidated” library (see “Collapse” category in 
Fig. 2a), each with read depths (RDs) of ∼60×.

Filtering Parameters
We filtered SNPs and samples using metrics and tools de
scribed in our first release (Kapun et al. 2021). In brief, we 
(i) calculated the levels of contamination by congenerics, 
(ii) levels of read duplication in the sequencing run, (iii) pro
portion of SNPs with missing allele frequency data, (iv) ratio 
of synonymous to nonsynonymous polymorphism (pN/pS), 
(v) nominal coverage, and (vi) the effective coverage. Levels 
of contamination by congenerics refer to the amount of 
non-D. melanogaster flies that were accidentally sequenced 
in pools.

We assessed contamination using a two-pronged approach. 
First, we assessed the levels of competitive mapping of reads to 
the genomes of D. melanogaster (RefSeq: GCF_000001215.4) 
and D. simulans (RefSeq: GCF_016746395.2). Drosophila 
simulans and D. melanogaster can be difficult to differentiate 
in the wild, and the wrong species may be sequenced by acci
dent. The specifics of competitive mapping were discussed pre
viously (Kapun et al. 2021; Machado et al. 2021). Our second 
approach uses a k-mer counting method that can be directly 
applied to raw read files and is flexible for multiple species 
that are represented or closely related to those represented in 
the target k-mer dictionary (Gautier 2023). Next, we gener
ated in silico pools consisting of mixtures of panels of inbred 
D. melanogaster (Mackay et al. 2012) and D. simulans 
(Signor et al. 2018). We generated these in silico pools by vary
ing the mixture levels of the two species. By analyzing these 
pools, we show that both the competitive mapping and the 
k-mer approach are accurate (supplementary fig. S3a, 
Supplementary Material online), with the competitive map
ping approach slightly overestimating contamination (by 
2.3% max) and the k-mer approach slightly underestimating 
contamination (by 6% max).

The levels of read duplication were extracted directly from 
the BAM files by mining the “mark_duplicates_report” output 
using a custom R script. Missing data was assessed by count
ing the number of sites reported as “NA” in a particular pool. 
The pN/pS statistic was calculated using the SNP annotations 
derived from SNPEff using a custom script (see GitHub). 
The nominal, genome-wide, RD is extracted directly 
from the BAM file using a custom script (see GitHub). Note 
that the per-site RD is a standard output of PoolSNP.

Masked gSYNC Files
Prior to SNP calling, we masked positions in each gSYNC file, 
which is a genome-wide extension of the SYNC file format 
(Kapun et al. 2021) for each sample based on minimum and 
maximum RD thresholds, as well as on proximity to putative 
indel polymorphisms as identified by GATK IndelRealigner 
[v3.8.1] (DePristo et al. 2011). In addition, we masked regions 
associated with repetitive elements identified as fragments 
of interrupted repeats by Repeat Masker (Smit et al. 1996; 
Jurka 2000), microsatellites and simple repeats identified by 
Tandem Repeat Finder (Benson 1999), repetitive windows 
identified by Window Masker and SDust (Morgulis et al. 
2006), and transposable elements and other repetitive elements 

identified by Repeat Masker (all obtained from the UCSC 
Genome Browser), using the custom Python script 
MaskSYNC_snape_complete.py, as previously described in 
Kapun et al. (2021). Importantly, the positions of these masked 
sites are stored in BED file format, which allows accounting for 
masked sites both in mono- and polymorphic positions when 
calculating unbiased site-specific averages for population genet
ic statistics as described in the section “Estimation of 
Nucleotide Diversity” (see also Kapun et al. 2020).

Effective Read Depth
In addition to the nominal RD, multiple downstream analyses 
in this paper use the “effective RD” metric (ne). This is a 
Pool-Seq-specific metric that corresponds to the number of in
dividually genotyped chromosomes, after accounting for the 
double binomial sampling that occurs in Pool-Seq 
(Kolaczkowski et al. 2011; Feder et al. 2012; Gautier et al. 
2013). An estimate of ne for a Pool-Seq sample can be defined as

ne =
N c

N + c − 1
(1) 

where N is the haploid sample size of the pool (i.e. number of 
pooled chromosomes) and c is the nominal RD at a given pos
ition or average across the genome (see supplementary text S1, 
Supplementary Material online for further details on the deriv
ation of Equation (1) and for a more general formula applicable 
to collapsed Pool-Seq sample).

Recombination Landscape
We inferred the genome-wide recombination landscape for 74 
of our samples using ReLERNN [v1.0.0] (Adrion et al. 2020). 
Samples were selected to cover the spatial distribution of the 
DEST 2.0 dataset, with a particular focus on Europe and 
North America. As ReLERNN has been shown to achieve mo
dest accuracy when using allele frequencies derived from 
Pool-Seq data sequenced at low depth, we selected those samples 
with the highest possible coverage (mean sequencing depth = 
68.8, SD = 35.8, min = 32, max = 234; supplementary table 
S1, Supplementary Material online). To further reduce any pos
sible bias and to maximize the reliability of the allele frequency 
used by ReLERNN to estimate recombination, we used 
BCFtools (Danecek et al. 2021) to extract allele frequencies of 
all biallelic SNPs with a frequency >0.01 and RD >10. The re
sulting data was used to run ReLERNN. The parameters used in 
ReLERNN simulate module were as follows: assumed per-base 
mutation rate: --assumedMu 3.27 × 10−9; assumed generation 
time (in years): --gentime 0.08; and upper rho/theta ratio 
--upperRhoThetaRatio 10. For the training module, we applied 
a MAF of 0.01 (–maf). For the prediction module, we consid
ered windows with a minimum number of 50 sites (–minsites). 
Following the developers’ recommendation, we let the program 
select the optimal size of the nonoverlapping windows on which 
per-base recombination rates were predicted. Analyses were run 
separately for autosomes and the X chromosome, to account for 
their different ploidy in the male-only pooled samples. To allow 
comparisons between samples, we estimated the average per- 
base recombination rates in larger 200 kb nonoverlapping slid
ing windows by combining the raw rates estimated in each 
ReLERNN-selected window weighted by the fraction of the 
overlap with the corresponding 200 kb sliding window. Using 
the same approach, we also calculated the recombination land
scape using the raw data of (Comeron et al. 2012), which are 
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significantly correlated with our estimates for most of the popu
lations (supplementary table S11, Supplementary Material on
line). We note a weak negative correlation between the 
coverage sequencing depth of a sample and the average CI of 
the recombination rate values measured across the genome 
(Spearman’s ρ = −0.330, S = 89,820, P = 0.0041; R2 = 0.018), 
consistent with a greater accuracy in the estimates of recombin
ation in samples with high-sequencing coverage. Recombination 
rates are available in the genome browser.

Estimation of Nucleotide Diversity
We conducted population genetic analyses using npStat [v1.c] 
(Ferretti et al. 2013). Out of the 530 high-quality samples, we 
used a subset of 504 samples for which we also had the masked 
BAM files, which were necessary to compute the statistics. The 
remaining 26 samples do not have a masked BAM file, as they 
were incorporated from the DGN data. For those samples, di
versity statistics were re-computed from the masked gsync files 
(see above) as described in DEST 1.0 data (Kapun et al. 2021). 
Standard nucleotide diversity statistics were first directly esti
mated from each BAM file, for nonoverlapping windows (10, 
50, or 100 kb) over the whole genome, using the estimators for 
Pool-Seq data developed by Ferretti et al. (2013). Only posi
tions covered by at least two reads and <250 reads with a min
imum quality >20 were considered in the computations 
(-mincov 2 -maxcov 250 -minqual 20 options). We further cal
culated genome-wide estimates for each sample (separating 
autosomes and the X-chromosome) as the median window es
timates (excluding windows with <75% coverage) for win
dow sizes of 10, 50, or 100 kb (i.e. as displayed in the 
genome browser). For the analysis of the X chromosome, 
the haploid sample size was set for each and every Pool-Seq 
sample to the number of flies included in the pool. Indeed, 
most of them consist of only males and for the few samples in
cluding females (i.e. samples included from: Reinhardt et al. 
2014; Svetec et al. 2016; Fournier-Level et al. 2019; Lange 
et al. 2022), the estimates were very similar to those obtained 
when setting the haploid sample size to twice the number of 
flies. For autosomes, the haploid sample size was set to twice 
the number of flies, except for 13 DGN samples that consist 
of pools of haploid embryos, for which the pool haploid sam
ple size was set to the number of flies.

Analyses of Chromosomal Inversions
Based on previously identified inversion-specific marker SNPs 
(Kapun et al. 2014), which are in tight linkage with the break
points of the common cosmopolitan inversions In(2L)t, 
In(2R)NS, In(3L)P, and In(3R)Payne and of the rare cosmo
politan inversions In(3R)C, In(3R)K, and In(3R)Mo, we esti
mated sample-specific inversion frequencies based on the 
median of the frequencies of inversion-specific alleles across 
SNP markers for a given inversion following the approach in 
Kapun et al. (2014). To test for associations between inversion 
frequencies and geographic variables, we partitioned the data 
by continent and analyzed each inversion separately. We fit 
general linear models including arcsine square-root trans
formed inversion frequencies as dependent variables, which 
accounts for the skewed variance distribution in binomial 
data when normality is assumed. We included latitude, longi
tude, and sampling year as independent variables and tested 
for the effect of the independent variables and all possible in
teractions with a likelihood ratio test. While we considered 

latitude and longitude as continuous numerical variables, we 
treated year as a categorical factor to account for the sparse 
sampling across years at most locations.

Principal Component Analysis
Global population structure analyses were done using the PCA 
algorithm implemented in the FactoMineR [v2.4] package (Lê 
et al. 2008). For these analyses, we included all available sam
ples that passed the filter in DEST 2.0. We include all biallelic 
SNPs in autosomes provided they had <1.0% missing data 
and a mean allele frequency >1.0% (across all samples). We 
thinned the dataset by only selecting SNPs that were 500 bp 
apart from each other, reducing the dataset to 168,408 
SNPs. Note that we ensured that this PCA was robust to var
iations in read coverage and haploid pool size by comparing 
the estimated PCs with those obtained with a random allele 
PCA, as implemented in randomallele.pca() from the R pack
age poolfstat [v3.0.0] (Gautier et al. 2022, 2024; 
supplementary fig. S7, Supplementary Material online).

Admixture Estimates: Linear Modeling Method
We estimated the proportion of African and European admix
ture in North and South America, as well as Australian sam
ples using a linear regression framework (Alkorta-Aranburu 
et al. 2012; Bergland et al. 2016). We modeled allele frequen
cies in each “admixed population” (i.e. North America, South 
America, and Australia) as a linear combination of the two 
“ancestral populations” (i.e. Europe and Africa) using an 
intercept-free linear model:

p i−admix = b1 (African ancestor)

+ b2 (European ancestork) + ε (2) 

where pi−admix is a vector of allele frequencies composed of 
5,000 randomly sampled SNPs across autosomes in the ith ad
mixed sample, β1 represents the proportion of African ances
try, and β2 represents the proportion of European ancestry. 
The model is iterated over every kth sample from Europe 
and we used a sample from Zambia (sample ID = 
ZM_Sou_Sia_1_2010-07-16) to represent the African ances
tor. We report the mean ancestry coefficients for each admix 
sample as the mean of β1 for all iterations of European ances
tors. For these admixture analyses, we omitted the “collapsed 
samples” from the (Fournier-Level et al. 2019) dataset. We 
performed this analysis by sampling SNPs across the entire 
genome, as well as inside chromosomal inversions, outside 
of inversions, and on noncoding mutations.

Admixture Estimates: Moments (Model-Based)
We also estimated the proportions of African and European 
admixture in North and South American populations, as 
well as in Australian samples, using the Python package 
moments [v1.2.2] (Jouganous et al. 2017). We employed a 
three-population model in which each pool from the 
Americas or Australia was modeled as a descendant of one 
African and one European source population. For this ana
lysis, we used a pooled sample from Zambia (sample ID: 
ZM_Sou_Sia_1_2010-07-16) to represent the African ances
tral population and a pooled sample from France (sample 
ID: FR_Ill_Sai_1_2017-09-16) as the European ancestral 
population.
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Allele frequency data inferred from Pool-Seq were discretized 
into allele counts using a probabilistic approach implemented 
in the R package genomalicious [v0.7.11] (Thia 2024), with 
the rounded-down estimate of nₑ as the expected number of in
dividuals per pool. The resulting data were imported into 
Python (v3.12), and a folded allele frequency spectrum was 
constructed. We then performed 10 rounds of optimization 
for each population trio in moments to estimate admixture pro
portions. Additional details for this analysis are given in 
supplementary text S3, Supplementary Material online.

Population Genetics Simulations With SLiM
We used SLiM [v4.2.2] (Haller and Messer 2023) to simulate 
999 stepping-stone populations resulting from the secondary 
encounter of two anciently diverged populations, mirroring 
the demographic history of D. melanogaster. We performed 
simulations using a non-Wright–Fisher model to generate a 
single chromosome of length 99,999 bp, with a mutation 
rate of 1.5 × 10−6 and a recombination rate of 1 × 10−8.

The simulation consisted of three distinct epochs. In the first 
epoch, a single ancestral population (p0) of size N = 5,000 
evolved neutrally for 7,999 generations, reaching an average 
genetic diversity of θ ≈ 0.01. At generation 8,000 (Epoch 2), a 
founder event initiated the formation of a new population 
(p1) when 0.2% of individuals from p0 colonized a novel habi
tat. This derived population had a smaller carrying capacity 
(N = 2,000) and experienced weak, asymmetric migration 
with the ancestral population (mp0→p1 = 10−5 and mp1→p0 = 
10−4). This epoch continued until generation 14,999, by which 
time populations p0 and p1 had diverged to an FST of ∼0.2. At 
generation 15,000 (Epoch 3), p0 and p1 seeded opposite 
ends of a linear stepping-stone cline (p2 and p8, respectively), 
with ∼0.2% of individuals from each parental population 
initiating colonization. Prior to this event, genomes of 
individuals contributing to gene flow were tagged with an 
ancestry-informative mutation to enable downstream tracking 
of true ancestry proportions. Following colonization, the two 
populations expanded inward through six intermediate demes 
(p3 to p7) arranged in a one-dimensional stepping-stone model. 
Migration occurred only between neighboring demes, simulat
ing a gradual secondary contact. The simulation proceeded 
until generation 16,900, at which point allele frequencies were 
estimated from populations p2 through p8. Prior to demograph
ic inference, we discretized the allele frequencies as if they had 
been sampled from 25 individuals. We used this data to evaluate 
the accuracy and behavior of our admixture-estimation 
methods.

Demographic Model Selection With Moments
We fit demographic models to subsets of the DEST 2.0 variant 
data with the Python package moments [v1.2.2] (Jouganous 
et al. 2017). We used a combination of custom code as well 
as modified scripts adapted from moments code to construct 
site frequency spectra (SFSs) from autosomal SNPs from the 
Pool-Seq VCF file. First, we partition the DEST 2.0 VCF (in
cluding all autosomes) file as a function of the demographic 
clusters reported in the results. Each demographic cluster con
tains a number of localities sampled across space and time. To 
obtain a representative geographic sample from each cluster, 
we selected one pooled sample per locality. We chose the 
pooled sample with the highest ne (Equation (1)) to represent 
a given locality. We then constructed a folded SFS for each 

demographic cluster by averaging the allele frequency of all 
constituent pools into 21 bins (i.e. discretizing the pool fre
quencies into counts of 20 diploid chromosomes). The SFS es
timation process was repeated 40 times per demographic 
cluster using a jackknife approach whereby one sample was 
excluded at random. These jackknifed samples were used for 
demographic inference. Because the VCF files used to con
struct these SFS were generated using the PoolSNP caller, we 
expect that the SFS estimates will underestimate the number 
of rare alleles across clusters (see Discussion).

Using these data, we constructed demes-type models (Gower 
et al. 2022) dubbed “one-population,” “split,” “two-splits,” 
and “admixture” (supplementary fig. S9, Supplementary 
Material online) in order to perform likelihood-based model se
lection of global Drosophila populations. A significant limita
tion of SFS-based demographic inference (Gutenkunst et al. 
2009) is that model likelihoods are calculated from element- 
wise products of measures of deviations between data and 
model SFSs, thus making the likelihoods dependent on the 
number of elements of the SFS. This strategy inhibits compari
son of models using classical approaches such as Akaike infor
mation criterion or Bayesian information criterion, since our 
models have different numbers of contemporary populations, 
whose corresponding SFSs have different numbers of dimen
sions (i.e. one dimension per population) and thus different 
numbers of elements. We overcome this limitation by introdu
cing collapsed log-likelihood (CLL), in which direct compari
son is enabled by “collapsing the additional populations of 
higher dimensional SFSs such that all SFSs to be compared 
have identical minimal shapes. For example, in order to com
pare three-population models of Europe that include the puta
tive overlap zone (cluster 7 in Fig. 4b) to two-population 
models of Europe, we independently fit models, then “collapse” 
the data and model SFSs of the three-population models by 
summing over the axis representing the overlap zone in order 
to yield a 2D-SFS with the same shape as the SFSs in the two- 
population models, and then recalculate the log-likelihood of 
the collapsed data given the collapsed model SFS in order to 
achieve the CLL. This method was replicated by collapsing 
the populations from the Caribbean (cluster 5 in Fig. 4b) as 
well as from the southern United States (cluster 6 in Fig. 4b) 
in order to compare two- and one-population models relative 
to other American populations (cluster 4 in Fig. 4b). 
Simulated validation of CLL as a robust statistic for selection 
between models of different dimensions is summarized at 
supplementary text S4, Supplementary Material online.

Replicable fitting of each model necessitated thousands of rep
licate runs of moments inference through several rounds of man
ual adjustment of parameter space boundaries, optimization 
algorithms, and other optimization parameters. The general 
workflow for each model fit involved initially searching enor
mous parameter spaces (i.e. spanning orders of magnitude in 
each parameter’s dimension) with the Nelder–Mead algorithm 
(Nelder and Mead 1965), then performing targeted searches 
with the BFGS algorithm (Fletcher 1987) until several runs 
were found to have nonrandomly converged to the same point 
in parameter space.

To validate model likelihoods and parameter estimates, we 
employed a jackknifing strategy, in which, for 40 replicates for 
each model fit to each region, we randomly removed one sam
ple from each population. The hypothesis tests in the Results 
section compare sets of 40 CLLs from model fits to jackknife 
replicates.
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Population Differentiation
We analyzed patterns of population differentiation across 
samples and clusters using the R package poolfstat [v3.0.0] 
(Gautier et al. 2022, 2024). This analysis was performed for 
528 samples that passed quality filtering and for 9 clusters 
(clusters defined based on the spatial clustering using k = 4 
and continent), thus excluding the D. simulans sample and 
“CN_Bei_Bei_1_1992-09-16,” on three set of polymor
phisms: (i) all chromosomes including heterochromatin; 
(ii) all chromosomes excluding heterochromatin; and (iii) all 
chromosomes excluding heterochromatin and SNPs with 
MAF < 0.05. In all analyses, we considered autosomes and 
X chromosomes separately to account for differences in pool 
size between male and female pools. For female-only pools, 
both autosomes and X chromosomes were counted as twice 
the number of flies in the pool. For male-only pools (or hap
loids), autosomes were counted as twice the number of flies, 
while X chromosomes equaled the number of flies in 
the pool. To examine pairwise population differentiation, 
the samples were grouped based on their spatial clusterings 
at k = 4 and k = 8 (k = 8 clustering results shown in supple
mentary fig. S13, Supplementary Material online). The 
computeFST() function was first used to estimate the global 
FST across all worldwide samples and also within each geo
graphical cluster using the ANOVA method (Hivert et al. 
2018).

To further quantify the impact of the structuring of the gen
etic diversity across continents, we used a hierarchical model
ing of differentiation consisting of decomposing overall FST 

(here denoted as hFST) into an across-group (FGT) and 
within-group (FSG) contribution (Nei 1973; Gautier et al. 
2024), as follows:

1 − hFST = (1 − FSG)(1 − FGT) (3) 

with groups of population being defined a priori (e.g. accord
ing to their continent of origin and the clustering results as we 
did in the present study). We estimated these statistics using 
the unbiased estimator developed for Pool-Seq data imple
mented in the computeFST() function of poolfstat [v3.0.0] 
(Gautier et al. 2024). In addition to whole-genome estimates, 
window-wise hierarchical FST parameters were estimated 
across windows of 10, 50, and 100 kb and are available in 
the DEST 2.0 browser.

We also explored how recombination rates and gene density 
correlate with the levels of differentiation (as measured with 
FGT). We used average recombination rates in 10 kb windows 
(Comeron et al. 2012; retrieved from Rech 2022). For gene 
density, we used gene counts in 10 kb windows. As previously 
reported (Keinan and Reich 2010; Nachman and Payseur 
2012), we observed a general negative correlation between 
population differentiation and recombination rates across 
most pairwise comparisons, while no clear pattern with gene 
density (supplementary table S12, Supplementary Material
online).

GIM Predictive Models
GIM analyses were conducted in the R package adegenet 
[v2.1.5] using discriminant analysis of the principal compo
nent (DAPC) framework (Jombart et al. 2010). While the ori
ginal GIM set from DEST 1.0 consisted of 30,000 loci, here we 
use only 28,253 loci. This was done because some of the ori
ginal markers were filtered out in the current DEST 2.0 panel. 

We used these markers to train the DAPC model using the 
sample’s state/province as the grouping prior. We retained 
30 PCs from the DEST 1.0 model for the state/province model. 
We retained PCs based on a leave-one-out analysis that mini
mized the sum of squared errors (SSEs) of the model. In add
ition, we also trained a second DEST-GIM 1.0 model using 
city labels (20 PCs were retained for this model; based on min
imum SSE). We used 232 samples from DEST 1.0 to train the 
model and then predicted the provenance of all samples from 
DEST 2.0.

DAPC models were trained using a cross-validation routine 
where the data is subdivided into a training (90%) and a test
ing set (10%) across 30 replicates. For simplicity, we only ex
plored the first 300 PCs across iterations. Parameters were 
optimized using the lowest mean square error statistic using 
the xvalDapc function in adegenet. Predictive GIM models 
were assessed by estimating the haversine distance (dhav) be
tween the predicted and expected latitude and longitude 
points. Haversine distances represent the lowest distance be
tween two points across a spherical earth with a radius of 
6,378.137 km using the R package geosphere [v.1.5-14] 
(Hijmans et al. 2022).

Temporal Genetic Structure and Latitudinal Analysis
We assessed levels of temporal structure across DEST by esti
mating FST between samples at the same locality collected a 
year apart from each other. These estimates of FST reflect dif
ferentiation resulting from the overwintering population 
“bust” across one winter. We call this summary statistic 
“year-to-year FST” as it captures levels of genetic variation 
for the population before and after a winter season. We corre
lated this data to latitude and performed a broken-stick regres
sion analysis using the segmented [v.2.0-4] R package 
(Muggeo 2003).

Scans for Adaptive Differentiation
We tested for adaptive differentiation at ∼908,543 SNPs that 
were polymorphic in a set of seasonally collected samples from 
across Europe (supplementary table S13, Supplementary 
Material online). First, we implemented the BayPass [v2.4] 
model for adaptive differentiation using the XtX* test statistic 
(Olazcuaga et al. 2020) while controlling for population struc
ture using a matrix of genetic relatedness (i.e. Ω matrix). We 
estimated the XtX* for every autosomal SNP in the genome 
using five independent runs of BayPass and took the median 
value per SNP. We also generated a null distribution of 
XtX* using the POD method outlined in Gautier (2015) and 
Olazcuaga et al. (2020). Briefly, we simulated allele frequen
cies for ∼9 M SNPs, ten times the number of observed SNPs 
used in this analysis. We then generated empirical P-values 
for the observed XtX* statistics by calculating the upper-tail 
probability of the observed data relative to the simulated 
POD data. We used the weighted Z analysis (wZa; Booker 
et al. 2024) to identify windows of signal enrichment across 
the genome. The wZa statistic combines the empirical 
P-values within a window for each test using Stouffer’s meth
od (Stouffer et al. 1949) weighted by average heterozygosity. 
We applied this approach in a sliding window approach 
with a window size of 100 kb and a step size of 50 kb.

Second, we ran the BayPass model including both the Ω ma
trix as a demographic prior as well as “spring” and “fall” la
bels as a proxy for seasonal selection pressures. We designated 
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the spring” sample as the first sample within a year, and the 
“fall” sample as the last sample within the year. Several sam
ples from DEST 1.0 were characterized by the collectors as 
“spring” or “fall.” For those samples, this label was used in 
the analysis. For more recent samples, including most sampled 
in DEST 2.0, samples are labeled as a function of date of col
lection. For such samples, we assigned seasonal labels by se
lecting the first and last sample collected in a locality within 
a year. For each SNP, we estimated the contrast statistics 
(C2) with five independent runs of BayPass and took the me
dian value. To generate a null distribution of C2 statistics, 
we used the simulated SNP data described above, and ran 
BayPass five times. We took the median C2 of the simulated 
data as our null distribution and calculated empirical 
P-values as described above. We performed a sliding window 
analysis of these empirical P-values using the wZa method.

Third, we implemented a GLMM approach that is similar to 
that applied previously by Machado et al. (2021). We modeled 
allele frequency at each SNP i using two models:

pi = α + X(yearfactor : localityfactor) + ε (4) 

pi = α + β1 (season) + X(yearfactor : localityfactor) + ε (5) 

Where pi is the allele frequency at the ith locus, α is the inter
cept term, and β1 is the term associated with season, X is the 
random effect term coded as an interaction term between the 
year of collection and the locality where flies were collected, 
and ϵ is the binomially distributed error. We assessed the stat
istical significance of the seasonal β1 term using a likelihood 
ratio test between Equations (4) and (5). GLMMs were fitted 
using the glmer function of the lme4 version [v1.1-35.5] pack
age in R (Bates et al. 2015). We performed a permutation ana
lysis following the methods outlined in Machado et al. (2021)
by shuffling the seasonal labels 100 times and rerunning the 
GLMM analysis for each permutation. We conducted a sliding 
window analysis of the GLMM.

GO-Term Enrichment Analysis
We performed gene-ontology enrichment analysis using 
GOWINDA [v.1.12] (Kofler and Schlötterer 2012) in gene 
mode (with parameters: --min-genes 5 --min-significance 1 
--simulations 100,000) on genes located in 10 kb windows 
of high differentiation (FGT > 0.2; supplementary table S7, 
Supplementary Material online), −log10(wZa P-values) > 
188.96 for the XtX* statistic (supplementary table S8, 
Supplementary Material online), and −log10(wZa P-values) 
> 3.65 for the C2 statistic (supplementary table S9, 
Supplementary Material online), representing the 99.9th per
centile from the simulated POD data (see above).

Supplementary Material
Supplementary material is available at Molecular Biology and 
Evolution online.

Ethics Statements
Fruit flies were collected either on public lands, where no per
mits are needed, or in private lands with explicit permission 
from the relevant stakeholders. To comply with the Nagoya 
protocol, material transfer agreements (MTAs) were secured 
and exchanged among researchers prior to transporting fly 
samples (for all new samples reported here) across borders. 

Permit MAE-DNB-CM-2015-0030, from the Environmental 
Ministry of Ecuador, was obtained by Vela to collect, export 
and perform molecular analysis on samples.

Acknowledgments
The authors are grateful to two anonymous reviewers for their 
helpful comments on our manuscript. The authors are indebt
ed to all members of the DrosEU and DrosRTEC consortia for 
their support, collaboration, and for discussion over the years. 
DrosEU was funded by a Special Topic Networks (STN) grant 
from the European Society for Evolutionary Biology (ESEB). 
J.C.B.N. acknowledges the Henderson–Harris fellowship pro
gram at the University of Vermont, also the Vermont 
Advanced Computing Center (URL: https://www.uvm.edu/ 
vacc) for providing computational resources that contributed 
to this publication. A.O.B. acknowledges Research 
Computing at the University of Virginia (URL: https://rc. 
virginia.edu) for providing computational resources and tech
nical support that have contributed to the results reported 
within this publication. A.O.B. also acknowledges Kathryn 
Linehan from UVA’s RC for support in updating the SNP call
ing pipeline that is part of DEST2.0. M.C.-Z. and J.G. ac
knowledge the Galician Supercomputing Center (CESGA), 
which provided access to its supercomputing infrastructure, 
the supercomputer FinisTerrae III and its permanent data stor
age system, funded by the Spanish Ministry of Science 
and Innovation, the Galician Government, and the 
European Regional Development Fund (ERDF). M.G. ac
knowledges the genotoul bioinformatics platform Toulouse 
Occitanie (Bioinfo Genotoul, https://doi.org/10.15454/1. 
5572369328961167E12) for providing computing resources. 
D.O. acknowledges Sue and Keith Obbard and Sandy Bayne 
for permission to collect flies on their land. M.H.A. acknowl
edges the Department of Evolution and Ecology at the 
University of Freiburg (Germany) for providing the necessary 
resources and support for sample preparations and DNA ex
tractions. S.V.S. acknowledges support from the 
PAUSE-ANR Ukraine Program. The authors also thank 
Pavlo A. Kovalenko and Nadiia M. Pirko for their assistance 
with collecting flies in 2017 to 2021. After 2022 February 
24, no collaborative actions or exchanges have taken place 
within our project between Ukrainian and Russian scientists 
nor their institutions.

Funding
J.C.B.N. was supported by start-up funds from the University 
of Vermont. M.Kap. was supported by the Horizon Europe 
project FAIRiCUBE (grant #101059238). S.S. was supported 
by the Horizon Europe project FAIRiCUBE (grant 
#101059238). D.A.P. was supported by the NIH 
2R35GM11816506 (MIRA grant). T.F. was supported by 
the Swiss National Science Foundation (SNSF) grants 
31003A-182262, 310030_219283, and FZEB-0-214654. 
A.O.B. was supported by the National Institutes of Health 
R35 GM119686 and National Science Foundation CAREER 
#2145688 grants. J.G. was supported by grant 
PID2020-115874GB-I00 funded by MICIU/AEI /10.13039/ 
501100011033, grant PID2023-148838NB-I00 funded by 
MICIU/AEI/10.13039/501100011033 and FEDER/EU, and 
grant 2021 SGR 00417 funded by the Departament de 
Recerca i Universitats, Generalitat de Catalunya. A.S.-G. 
was supported by the Ministerio de Ciencia e Innovación of 

22                                                                                                                                    Nunez et al. · https://doi.org/10.1093/molbev/msaf132
D

ow
nloaded from

 https://academ
ic.oup.com

/m
be/article/42/8/m

saf132/8237493 by guest on 19 August 2025

http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
http://academic.oup.com/mbe/article-lookup/doi/10.1093/molbev/msaf132#supplementary-data
https://www.uvm.edu/vacc
https://www.uvm.edu/vacc
https://rc.virginia.edu
https://rc.virginia.edu
https://doi.org/10.15454/1.5572369328961167E12
https://doi.org/10.15454/1.5572369328961167E12


Spain (MCIN/AEI/10.13039/501100011033; grant 
PID2020-113168GB-I00) and Comissió Interdepartamental 
de Recerca I Innovació Tecnològica of Catalonia, Spain 
(2021SGR00279). A.P. and M.T. were supported by the 
Ministry of Science, Technological Development and 
Innovation of the Republic of Serbia (NITRA), grant no. 
451-03-66/2024-03/200007. A.B., M.P.G.G., and S.Casi. 
were supported by Ministerio de Ciencia e Innovación 
(PID2021-127107NB-I00) and AGAUR Generalitat de 
Catalunya (SGR 00526). C.S. was supported by the Austrian 
Science Funds, FWF, 10.55776/P32935, 10.55776/P33734. 
C.Fr. was supported by the German Research Foundation 
(DFG, grant # FR2973/11-1). D.O. was supported by the 
UK Biotechnology and Biological Sciences Research Council 
(BBSRC) grant BB/T007516/1. D.V. was supported by project 
QINV0196-IINV529010100 from the Pontificia Universidad 
Católica del Ecuador; Abbott was supported by 
VR-2015-04680 and VR-2020-05412. J.P. was supported 
by the Deutsche Forschungsgemeinschaft (DFG) projects 
255619725 and 503272152. M.Kan. was supported by the 
Academy of Finland project 322980. M.S.V., M.J., and 
M.Ra. were supported by the Ministry of Science, 
Technological Development and Innovation of the Republic 
of Serbia (NITRA), grant no. 451-03-65/2024-03/ 200178. 
M.S.-R. was supported by the Ministry of Science, 
Technological Development and Innovation of the Republic 
of Serbia (NITRA) grant no. 451-03-47/2023-01/200178. 
M.G.R. was supported by Natural Environment Research 
Council (NERC), UK award NE/V001566/1. M.Re. was sup
ported by the Bettencourt Schueller Foundation long-term 
partnership; this work was also partly supported by a CRI 
Core Research Fellowship. P.A.E. was supported by award 
#61-1673 from the Jane Coffin Childs Memorial Fund for 
Medical Research (www.jccfund.org). S.E.R.-O. was sup
ported by PID2020-119255GB-I00 (MICINN, Spain), by 
the CERCA Programme/Generalitat de Catalunya and ac
knowledges financial support from the Spanish Ministry of 
Economy and Competitiveness, through the Severo Ochoa 
Programme for Centres of Excellence in R&D 2016–2019 
and 2020–2023 (SEV-2015-0533, CEX2019-000917) and 
the European Regional Development Fund (ERDF). N.H. 
and C.L. were supported by Australian Research Council 
DP190102512. E.K. was supported by the European 
Molecular Biology Organization (EMBO) long-term fellow
ship ALT 248-02018. H.C. was supported by the French 
National Research Agency (ANR) project Drothermal 
(ANR-20-CE02-011-01).

Author Contributions
All author contributions to this work are denoted in 
supplementary table S14, Supplementary Material online.

Data Availability
The DEST 2.0 browser is built on the latest version of 
JBrowse 2 (Diesh et al. 2023), an enhanced successor to 
JBrowse 1, which powered the original DEST 1.0 browser 
(Kapun et al. 2021). JBrowse 2.0 offers improved perform
ance through a modern software architecture that supports 
parallel rendering of tracks and allows for the visualization 
of new data types, such as VCF files. Similar to the first 
DEST browser, it features a user-friendly data selector 
that facilitates the selection of the multiple population 

genetic metrics and statistics compiled for the DEST 2.0 re
lease (supplementary fig. S16, Supplementary Material on
line). Additionally, the browser provides a portal for 
downloading allelic information and precomputed popula
tion genetics statistics in multiple formats, along with a us
age tutorial featuring worked examples. Bulk downloads 
of all compiled tracks are available in BigWig format 
(Kent et al. 2010), and Pool-Seq files (in VCF format) can 
be accessed through a dedicated data directory. All data, 
tools, and supporting resources for the DEST 2.0 release, 
including reference tracks from FlyBase (v.6.12; Dos 
Santos et al. 2015), are freely available through the website 
(https://dest.bio). The browser operates on an Apache ser
ver running CentOS 7.2 Linux x64, powered by 16 Intel 
Xeon 2.4 GHz processors and 32 GB of RAM. All new se
quences reported here for the first time are available on the 
SRA (https://www.ncbi.nlm.nih.gov/sra) at PRJNA993612 
and PRJNA1263695. Code is available in GitHub at: 
https://github.com/DEST-bio/DESTv2_data_paper and 
https://github.com/DEST-bio/DESTv2. All outputs from 
the DEST 2.0 pipeline can be found at https://dest.bio. 
Supplementary datasets can be found in Zenodo at 
https://doi.org/10.5281/zenodo.13731977.
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